Advance Search
CAI Yi,SHEN Huazhang,HUANG Houxu,et al. Study on evolution law of internal deformation of soil mass corresponding to subsidence stretching area of thick loose layer mining areas:a case of Suntuan Coal Mine in Huaibei[J]. Coal Science and Technology,2024,52(8):36−49. DOI: 10.12438/cst.2024-0645
Citation: CAI Yi,SHEN Huazhang,HUANG Houxu,et al. Study on evolution law of internal deformation of soil mass corresponding to subsidence stretching area of thick loose layer mining areas:a case of Suntuan Coal Mine in Huaibei[J]. Coal Science and Technology,2024,52(8):36−49. DOI: 10.12438/cst.2024-0645

Study on evolution law of internal deformation of soil mass corresponding to subsidence stretching area of thick loose layer mining areas:a case of Suntuan Coal Mine in Huaibei

Funds: 

National Natural Science Foundation of China (42307203);Natural Science Research Project of Colleges and Universities of Anhui Province (2022AH040043);Anhui Province College Young and Middle aged Teacher Training Action Project (YQZD2023051)

More Information
  • Received Date: May 14, 2024
  • Available Online: July 25, 2024
  • To study the internal deformation evolution law of soil mass corresponding to subsidence stretching area of mining areas with thick loose layer, the No.10111-working face of Suntuan coal mine in Huaibei is selected, and No.1—3 vertical boreholes are arranged at 60 m spacing along the direction perpendicular to the advancing direction from the near to the distant for the loose layer corresponding to stretching area of the working face. In the process of coal mining subsidence, the borehole deformation monitoring is carried out based on the technology of optical fiber (borehole No.1) and inclinometer (borehole No.2—3). The area occupied by the overlying rock strata and loose layers mobilized by coal mining is considered as a deformation zone, and the concept of the movement angle of strata of arbitrary thickness is introduced. The results show that: The maximum depth at which strain occurs in the borehole No.1 is about 157 meters, with the deeper sections of the borehole reaching the active phase before the shallower; Within the monitoring range of boreholes No.2 and No.3, the geological formations can be divided from bottom to top into stable sections, lower, middle, and upper sections of the deformation zone. The final cumulative horizontal displacement at the borehole openings of No.2 and No.3 is 129.8 mm and 99.4 mm respectively, and the maximum displacement depths of about 108 m and 75 m respectively; Moreover, the horizontal displacement distribution of No.2 and No.3 borehole from bottom to top is generally uniform, and the average horizontal displacement per meter borehole is about 1.2 mm and 1.3 mm, respectively; In each borehole, the lower part of the deformation zone reaches the active period before the upper part and the upper part still has weak deformation after the lower part of the deformation zone is stable; For a certain thickness of strata in the loose layer, the movement angle increases with the increase of its depth, and the depth h of the lower boundary of the loose layer deformation zone decreases with the increase of the horizontal distance l from the working face, which accords with the exponential function relationship.

  • [1]
    郭广礼,查剑锋. 矿山开采沉陷学[M]. 徐州:中国矿业大学出版社,2020.
    [2]
    宋振骐,郝建,石永奎,等. “实用矿山压力控制理论”的内涵及发展综述[J]. 山东科技大学学报(自然科学版),2019,38(1):1−15.

    SONG Zhenqi,HAO Jian,SHI Yongkui,et al. An overview of connotation and development of practical ground pressure contorl theory[J]. Journal of Shandong University of Science and Technology (Natural Science),2019,38(1):1−15.
    [3]
    钱鸣高. 20年来采场围岩控制理论与实践的回顾[J]. 中国矿业大学学报,2000,29(1):1−4.

    QIAN Minggao. Review of the theory and practice of strata control around longwall face in recent 20 years[J]. Journal of China University of Mining & Technology,2000,29(1):1−4.
    [4]
    钱鸣高, 缪协兴, 许家林. 岩层控制的关键层理论[M]. 徐州: 中国矿业大学出版社, 2003.
    [5]
    宋振骐. 实用矿山压力控制[M]. 徐州: 中国矿业大学出版社, 1988.
    [6]
    高延法. 岩移“四带”模型与动态位移反分析[J]. 煤炭学报,1996,21(1):51−56.

    GAO Yanfa. “Four-zone” model of rockmass movement and back analysis of dynamic displacement[J]. Journal of China Coal Society,1996,21(1):51−56.
    [7]
    康红普, 徐刚, 王彪谋, 等. 我国煤炭开采与岩层控制技术发展40 a及展望[J]. 采矿与岩层控制工程学报,2019,1(1):013501. doi: 10.3321/j.issn:0253-9993.1996.01.010

    KANG Hongpu, XU Gang, WANG Biaomou, et al. Forty years development and prospects of underground coal mining and strata control technologies in China[J]. Journal of Mining and Strata Control Engineering,2019,1(1):013501. doi: 10.3321/j.issn:0253-9993.1996.01.010
    [8]
    黄庆享,周金龙,马龙涛,等. 近浅埋煤层大采高工作面双关键层结构分析[J]. 煤炭学报,2017,42(10):2504−2510.

    HUANG Qingxiang,ZHOU Jinlong,MA Longtao,et al. Double key strata structure analysis of large mining height longwall face in nearly shallow coal seam[J]. Journal of China Coal Society,2017,42(10):2504−2510.
    [9]
    左建平,吴根水,孙运江,等. 岩层移动内外 “类双曲线” 整体模型研究[J]. 煤炭学报,2021,46(2):333−343.

    ZUO Jianping,WU Genshui,SUN Yunjiang,et al. Investigation on the inner and outer analogous hyperbola model(AHM)of strata movement[J]. Journal of China Coal Society,2021,46(2):333−343.
    [10]
    李江华,王东昊,黎灵,等. 不同覆岩类型高强度采动裂隙发育特征对比研究[J]. 煤炭科学技术,2021,49(10):9−15.

    LI Jianghua,WANG Donghao,LI Ling,et al. Comparative study on development characteristics of high-intensive mining fissures in different overburden types[J]. Coal Science and Technology,2021,49(10):9−15.
    [11]
    鞠金峰,许家林,刘阳军,等. 关键层运动监测及岩移5阶段规律:以红庆河煤矿为例[J]. 煤炭学报,2022,47(2):611−622.

    JU Jinfeng,XU Jialin,LIU Yangjun,et al. Key strata movement monitoring during underground coal mining and its 5-stage movement law inversion:a case study in Hongqinghe Mine[J]. Journal of China Coal Society,2022,47(2):611−622.
    [12]
    许延春,张玉卓. 应用离散元法分析采矿引起厚松散层变形的特征[J]. 煤炭学报,2002,27(3):268−272. doi: 10.3321/j.issn:0253-9993.2002.03.010

    XU Yanchun,ZHANG Yuzhuo. Deformation characteristics of the thick unconsolidated layers due to mining by UDEC[J]. Journal of China Coal Society,2002,27(3):268−272. doi: 10.3321/j.issn:0253-9993.2002.03.010
    [13]
    刘义新. 厚松散层下深部开采覆岩破坏及地表移动规律研究[D]. 北京:中国矿业大学(北京),2010.

    LIU Yixin. Study on overburden failure and surface movement law of deep mining under thick loose layer[D]. Beijing:China University of Mining & Technology,Beijing,2010.
    [14]
    陈俊杰,陈勇,郭文兵,等. 厚松散层开采条件下地表移动规律研究[J]. 煤炭科学技术,2013,41(11):95−97,102.

    CHEN Junjie,CHEN Yong,GUO Wenbing,et al. Study on surface movement law under the condition of thick unconsolidated strata[J]. Coal Science and Technology,2013,41(11):95−97,102.
    [15]
    李德海,许国胜,余华中. 厚松散层煤层开采地表动态移动变形特征研究[J]. 煤炭科学技术,2014,42(7):103−106.

    LI Dehai,XU Guosheng,YU Huazhong. Study on features of surface dynamic movement and deformation caused by coal mining under thick alluvium[J]. Coal Science and Technology,2014,42(7):103−106.
    [16]
    张文泉,刘海林,赵凯. 厚松散层薄基岩条带开采地表沉陷影响因素研究[J]. 采矿与安全工程学报,2016,33(6):1065−1071.

    ZHANG Wenquan,LIU Hailin,ZHAO Kai. Influential factors on surface subsidence in stripe mining under thick unconsolidated layers and thin bedrock[J]. Journal of Mining & Safety Engineering,2016,33(6):1065−1071.
    [17]
    汤铸,李树清,黄寿卿,等. 厚松散层矿区综放开采地表移动变形规律[J]. 煤矿安全,2018,49(6):210−212,216.

    TANG Zhu,LI Shuqing,HUANG Shouqing,et al. Research on surface movement law for fully-mechanized top coal caving under thick unconsolidated layers[J]. Safety in Coal Mines,2018,49(6):210−212,216.
    [18]
    史卫平. 基于覆岩移动的厚松散层下煤层开采地表移动规律研究[D]. 青岛:山东科技大学,2019.

    SHI Weiping. Study on surface movement law of coal seam mining under thick loose layer based on overlying strata movement[D]. Qingdao:Shandong University of Science and Technology,2019.
    [19]
    高明中. 关键层破断与厚松散层地表沉陷耦合关系研究[J]. 安徽理工大学学报(自然科学版),2004,24(3):24−27. doi: 10.3969/j.issn.1672-1098.2004.03.005

    GAO Mingzhong. Study on coupling relation between broken key stratum and thick unconsolidated layers[J]. Journal of Anhui University of Science and Technology (Natural Science),2004,24(3):24−27. doi: 10.3969/j.issn.1672-1098.2004.03.005
    [20]
    汪锋. 采动覆岩结构的“关键层—松散层拱” 理论及其应用研究[D]. 徐州:中国矿业大学,2016.

    WANG Feng. Study on the theory of “key stratum-loose stratum arch” of mining overlying strata structure and its application[D]. Xuzhou:China University of Mining and Technology,2016.
    [21]
    汪锋,陈绍杰,许家林,等. 基于松散层拱结构理论的岩层控制研究[J]. 煤炭科学技术,2020,48(9):130−138.

    WANG Feng,CHEN Shaojie,XU Jialin,et al. Research on ground control based on arch structure in unconsolidated layers theory[J]. Coal Science and Technology,2020,48(9):130−138.
    [22]
    侯得峰. 厚松散层类散体拱结构动态演化机理及应用研究[D]. 北京:中国矿业大学(北京),2021.

    HOU Defeng. Research on dynamic evolution mechanism and application of bulk arch structure in thick loose layers[D]. Beijing:China University of Mining and Technology(Beijing),2021.
    [23]
    刘辉,左建宇,苏丽娟,等. 巨厚含水松散层下开采地表移动变形规律研究[J]. 煤炭科学技术,2022,50(5):49−56.

    LIU Hui,ZUO Jianyu,SU Lijuan,et al. Study on surface movement and deformation laws in mining under thick water-bearing loose layer[J]. Coal Science and Technology,2022,50(5):49−56.
    [24]
    刘辉,李玉,苏丽娟,等.松基比对地表变形的影响及厚松散层薄基岩条件的分析与探讨[J/OL].煤炭科学技术. Doi.org/10.13199/j.cnki.cst.2022-1451

    LIU Hui, LI Yu, SU Lijuan, et al. Analysis and discussion of the influence of loose foundation ratio on surface deformation and the condition of thick loose layer and thin bedrock[J/OL]. Coal Science and Technology. Doi.org/10.13199/j.cnki.cst.2022-1451.
    [25]
    彭世龙,程桦,姚直书,等. 厚松散层底含直覆薄基岩开采地表沉陷预计及特征研究[J]. 煤炭学报,2022,47(12):4417−4430.

    PENG Shilong,CHENG Hua,YAO Zhishu,et al. Study on prediction and characteristics of surface subsidence in mining when the bottom aquifer of thick loose layer directly covers thin bedrock[J]. Journal of China Coal Society,2022,47(12):4417−4430.
    [26]
    郑志刚. 厚松散层条件下地表沉陷变形的特点[A]. 第六届全国矿山测量学术讨论会论文集[C]. 中国煤炭学会,煤炭科学研究总院唐山分院,2002:131−132.

    ZHENG Zhigang. Characteristics of surface subsidence and deformation under the condition of thick loose layer[A]. Proceedings of the 6th National Symposium on Mine Surveying[C]. China Coal Society,Tangshan Branch of China Coal Research Institute,2002:131−132.
    [27]
    贺平,王东攀,高保彬. 厚松散层地表移动变形预计的双曲函数法[J]. 煤矿开采,2005,10(2):3−5. doi: 10.3969/j.issn.1006-6225.2005.02.002

    HE Ping,WANG Dongpan,GAO Baobin. Applying hyperbolic function to predict the surface movement and deformation in the condition of thick alluvium[J]. Coal Mining Technology,2005,10(2):3−5. doi: 10.3969/j.issn.1006-6225.2005.02.002
    [28]
    顾伟. 厚松散层下开采覆岩及地表移动规律研究[D]. 徐州:中国矿业大学,2013.

    GU Wei. Study on mining overburden and surface movement law under thick loose layer[D]. Xuzhou:China University of Mining and Technology,2013.
    [29]
    王宁. 厚松散层矿区采煤沉陷预测模型研究:以淮南矿区为例[D]. 徐州:中国矿业大学,2014.

    WANG Ning. Study on prediction model of mining subsidence in thick loose layer mining area: taking Huainan mining area as an example[D]. Xuzhou:China University of Mining and Technology,2014.
    [30]
    赵丽. 巨厚松散层下地表移动参数解算与移动变形预计[D]. 淮南:安徽理工大学,2013.

    ZHAO Li. Calculation of ground movement parameters and prediction of movement and deformation under the thick loose layer[D]. Huainan:Anhui University of Science and Technology,2013.
    [31]
    李静娴. 厚松散层下开采地表移动变形规律与区域预测模型构建[D]. 淮南:安徽理工大学,2021.

    LI Jingxian. The law of surface movement and deformation and the construction of regional prediction model for mining under thick loose layers[D]. Huainan:Anhui University of Science and Technology,2021.
    [32]
    张诚成,施斌,朱鸿鹄,等. 地面沉降分布式光纤监测土–缆耦合性分析[J]. 岩土工程学报,2019,41(9):1670−1678.

    ZHANG Chengcheng,SHI Bin,ZHU Honghu,et al. Theoretical analysis of mechanical coupling between soil and fiber optic strain sensing cable for distributed monitoring of ground settlement[J]. Chinese Journal of Geotechnical Engineering,2019,41(9):1670−1678.
    [33]
    杜文刚,柴敬,张丁丁,等. 采动覆岩导水裂隙发育光纤感测与表征模型试验研究[J]. 煤炭学报,2021,46(5):1565−1575.

    DU Wengang,CHAI Jing,ZHANG Dingding,et al. Optical fiber sensing and characterization of water flowing fracture development in mining overburden[J]. Journal of China Coal Society,2021,46(5):1565−1575.
    [34]
    孙斌杨,张平松. 基于DFOS的采场围岩变形破坏监测研究进展与展望[J]. 工程地质学报,2021,29(4):985−1001.

    SUN Binyang,ZHANG Pingsong. Research progress and prospect of surrounding rock deformation and failure monitoring in stope based on dfos[J]. Journal of Engineering Geology,2021,29(4):985−1001.
    [35]
    侯公羽,胡涛,李子祥,等. 基于BOFDA的覆岩采动 “两带” 变形表征研究[J]. 采矿与安全工程学报,2020,37(2):224−237.

    HOU Gongyu,HU Tao,LI Zixiang,et al. Fiber optic strain characterization of \ “two zones\” deformation of overburden mining based on BOFDA[J]. Journal of Mining & Safety Engineering,2020,37(2):224−237.
    [36]
    吴侃,邓喀中,周鸣,等. 综采放顶煤表土层移动监测成果分析[J]. 煤炭学报,1999,24(1):21−24. doi: 10.3321/j.issn:0253-9993.1999.01.005

    WU Kan,DENG Kazhong,ZHOU Ming,et al. The analysis of monitor conclusion about overburden displacement under condition of fully mechanized sublevel caving[J]. Journal of China Coal Society,1999,24(1):21−24. doi: 10.3321/j.issn:0253-9993.1999.01.005
    [37]
    王义锋. 基于测斜仪监测成果的蠕滑体变形机制分析[J]. 岩石力学与工程学报,2009,28(1):212−216. doi: 10.3321/j.issn:1000-6915.2009.01.028

    WANG Yifeng. Analysis of creep deformation mechanism based on inclinometer monitoring results[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(1):212−216. doi: 10.3321/j.issn:1000-6915.2009.01.028
    [38]
    唐辉明,蔡毅,张永权,等. 测斜仪在滑坡深部位移监测中的应用现状及展望[A]. 2016年全国工程地质学术年会论文集[C]. 2016.

    TANG Huiming,CAI Yi,ZHANG Yongquan,at al. Current status and prospect for inclinometer application in monitoring of landslide deep displacement[A]. Proceedings of the 2016 National Engineering Geology Annual Conference[C]. 2016.
    [39]
    张社荣,梁礼绘. 考虑三维应力旋转的隧洞衬砌支护时机研究[J]. 水利学报,2007,38(6):704−709. doi: 10.3321/j.issn:0559-9350.2007.06.010

    ZHANG Sherong,LIANG Lihui. Analysis on tunnel liner supporting time considering three-dimensional stress rotation[J]. Journal of Hydraulic Engineering,2007,38(6):704−709. doi: 10.3321/j.issn:0559-9350.2007.06.010
    [40]
    陈洲泉, 陈湘生, 庞小朝, 等. 考虑非共轴性的隧道开挖引起的地表沉降数值分析[J]. 隧道建设(中英文),2023,43(1):92−101.

    CHEN Zhouquan, CHEN Xiangsheng, PANG Xiaochao, et al. Numerical simulation of surface settlement induced by tunneling considering noncoaxiality[J]. Tunnel Construction,2023,43(1):92.
    [41]
    WU H, POLLARD D D. Possible secondary fracture patterns due to a change in the direction of loading[C]//Fractured and jointed rock masses. 1995: 487-493.
    [42]
    EBERHARDT E. Numerical modelling of three-dimension stress rotation ahead of an advancing tunnel face[J]. International Journal of Rock Mechanics and Mining Sciences,2001,38(4):499−518. doi: 10.1016/S1365-1609(01)00017-X
    [43]
    李广信,张丙印,于玉贞. 土力学[M]. 2版. 北京:清华大学出版社,2013.
  • Related Articles

    [1]JIANG Changbao, YANG Yihao, LIU Huihui, GUO Jianquan, FU Yinlan, WU Jiayao. Study on influence of natural fractures on initiaition and propagation of hydraulic fracturing coal[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(5): 92-101. DOI: 10.12438/cst.2023-0813
    [2]LI Yuteng, FAN Tao, ZHAO Rui, LIU Lei, ZHAO Jiajia. Application of three-component transient electromagnetic method in hydraulic fracturing effect evaluation of directional long borehole in hard roof[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(8): 101-107.
    [3]XU Cheng, QIU Haisheng, LYU Xiaobo, ZHANG Kaijia, GUO Huaiguang. Numerical study on law of fracture deflection in longitudinal slot hydraulic fracturing[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(10): 78-84.
    [4]GUO Yuehui, LEI Dongji, ZHANG Yugui, ZHOU Meng, LI Jian. Experimental study on dispersion characteristics of complex resistivity of hydraulic fracturing coal[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(5): 198-202.
    [5]XU Xuezhan. Combined permeability enhancement technology of ultra-high pressure hydraulic slot and hydraulic fracturing in low permeability coal seam[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(7).
    [6]SI Ruijiang, LI Feipeng, ZHAO Lulu, XU Lijun, FENG Hengxing. Research on hydraulic fracturing roof cutting and roadway protection technology with wide sublevel coal pillar[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(7).
    [7]SUN Zhiyong, ZHANG Zhen, WANG Ziyue, WANG Tao, FU Yukai. Application & research on hydraulic fracturing and cutting top pressure relief technology in large mining height retained roadway[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (10).
    [8]Zhang Xiao. Study on hydraulic fracturing technology in initial caving of fully-mechanized coal mining face[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (7).
    [9]Kang Hongpu Feng Yanjun, . Hydraulic fracturing technology and its applications in strata control in underground coal mines[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (1).
    [10]HUANG Sai-peng YAO Yan-bin Cul Jin-bang YU Peng TANG Ji-dan SUN Ze-liang LI Jun-qian, . Numerical simulation study on influence factors of hydraulic fracturing pressure in coal reservoir[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (4).

Catalog

    Article views (123) PDF downloads (46) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return