Advance Search
LIU Yongcheng,ZHANG Lei,PAN Jianzhong,et al. Research status and prospect of coalbed methane intelligent extraction in China[J]. Coal Science and Technology,2025,53(S1):223−232. DOI: 10.12438/cst.2024-0624
Citation: LIU Yongcheng,ZHANG Lei,PAN Jianzhong,et al. Research status and prospect of coalbed methane intelligent extraction in China[J]. Coal Science and Technology,2025,53(S1):223−232. DOI: 10.12438/cst.2024-0624

Research status and prospect of coalbed methane intelligent extraction in China

More Information
  • Received Date: May 12, 2024
  • Available Online: April 18, 2025
  • Coalbed methane (CBM) is a high-quality, clean non-conventional energy source, and its rational development and utilisation has the important value of improving the alleviation of resource pressure and ensuring safe production. Especially in recent years, the rapid development of artificial intelligence technology has embodied obvious potential in the field of mining, and it is of great practical significance to use artificial intelligence technology to improve the capacity and level of CBM development. The main basic applications of AI technology in CBM development at the current stage are analysed and summarized from three technical directions, such as reservoir exploration, capacity prediction, and pumping control, and on the basis of which, the salient features, application fields, and development prospects of each type of technology are analysed. Then, it is analysed that complex geological conditions, insufficient accumulation of high-quality data, and few reference cases are the main technical challenges at this stage, which limit the development of relevant technologies to a large extent. As a result, the main technologies required for CBM intelligent development in the short term and their long-term development trends are summarised, and relevant recommendations are put forward based on the current status and main features of the main technologies: in general, it is necessary to give full play to the existing advantages, further optimise the relevant technological platforms on the basis of the existing ones, and appropriately introduce and learn from the international advanced technologies; pay attention to the accumulation of data, and build a high-quality information support platform for the representative CBM wellfields, so as to provide high-quality data for the construction of the intelligent extraction platforms. Integrate resources, accelerate the development of intelligent extraction platforms in practice, promote the application of typical innovative technologies, and improve the level of intelligent CBM development; focus on the development of intelligent technologies that are compatible with deep CBM and "three-gas" combined extraction, in view of China's special geological conditions, so as to achieve a superb turnaround in the corresponding field. In order to realise the curved-track overtaking in the corresponding fields.

  • [1]
    文博杰,陈毓川,王高尚,等. 2035年中国能源与矿产资源需求展望[J]. 中国工程科学,2019,21(1):68−73. doi: 10.15302/J-SSCAE-2019.01.010

    WEN Bojie,CHEN Yuchuan,WANG Gaoshang,et al. China’s demand for energy and mineral resources by 2035[J]. Strategic Study of CAE,2019,21(1):68−73. doi: 10.15302/J-SSCAE-2019.01.010
    [2]
    MU F Y,ZHONG W Z,ZHAO X L,et al. Strategies for the development of CBM gas industry in China[J]. Natural Gas Industry B,2015,2(4):383−389. doi: 10.1016/j.ngib.2015.09.013
    [3]
    徐凤银,闫霞,林振盘,等. 我国煤层气高效开发关键技术研究进展与发展方向[J]. 煤田地质与勘探,2022,50(3):1−14.

    XU Fengyin,YAN Xia,LIN Zhenpan,et al. Research progress and development direction of key technologies for efficient coalbed methane development in China[J]. Coal Geology & Exploration,2022,50(3):1−14.
    [4]
    何东博,贾成业,位云生,等. 世界天然气产业形势与发展趋势[J]. 天然气工业,2022,42(11):1−12.

    HE Dongbo,JIA Chengye,WEI Yunsheng,et al. Current situation and development trend of world natural gas industry[J]. Natural Gas Industry,2022,42(11):1−12.
    [5]
    于天暝. 煤层气井站异常目标检测及识别算法研究[D]. 大连:大连理工大学,2019.

    YU Tianming. Research on detection and identification algorithm of abnormal targets in coalbed methane wells and stations[D]. Dalian:Dalian University of Technology,2019.
    [6]
    杨秀春,徐凤银,王虹雅,等. 鄂尔多斯盆地东缘煤层气勘探开发历程与启示[J]. 煤田地质与勘探,2022,50(3):30−41. doi: 10.12363/issn.1001-1986.21.12.0823

    YANG Xiuchun,XU Fengyin,WANG Hongya,et al. Exploration and development process of coalbed methane in eastern margin of Ordos Basin and its enlightenment[J]. Coal Geology & Exploration,2022,50(3):30−41. doi: 10.12363/issn.1001-1986.21.12.0823
    [7]
    王国法,刘峰,庞义辉,等. 煤矿智能化:煤炭工业高质量发展的核心技术支撑[J]. 煤炭学报,2019,44(2):349−357.

    WANG Guofa,LIU Feng,PANG Yihui,et al. Coal mine intellectualization:The core technology of high quality development[J]. Journal of China Coal Society,2019,44(2):349−357.
    [8]
    ZHANG J Y,HE Q Z,CHEN J,et al. Mechanism of gas bubble migration in meso fissure of coal water injection based on CT images[J]. Fuel,2024,358:130327. doi: 10.1016/j.fuel.2023.130327
    [9]
    胡林杰,冯增朝,周动,等. 煤层气原位注热开采的数值模拟研究及工程实践[J]. 煤炭学报,2023,48(12):4473−4486.

    HU Linjie,FENG Zengchao,ZHOU Dong,et al. Numerical simulation study and engineering practice of in situ heat injection mining of coalbed methane[J]. Journal of China Coal Society,2023,48(12):4473−4486.
    [10]
    张文龙,魏庆阳,周围. 人工智能在煤层气勘探开发应用中面临的挑战及应对策略[J]. 信息系统工程,2021(3):51−55.

    ZHANG Wenlong,WEI Qingyang,ZHOU Wei. Challenges and countermeasures of artificial intelligence in CBM exploration and development[J]. China CIO News,2021(3):51−55.
    [11]
    黄中伟,李国富,杨睿月,等. 我国煤层气开发技术现状与发展趋势[J]. 煤炭学报,2022,47(9):3212−3238.

    HUANG Zhongwei,LI Guofu,YANG Ruiyue,et al. Review and development trends of coalbed methane exploitation technology in China[J]. Journal of China Coal Society,2022,47(9):3212−3238.
    [12]
    翟成,李贤忠,李全贵. 煤层脉动水力压裂卸压增透技术研究与应用[J]. 煤炭学报,2011,36(12):1996−2001.

    ZHAI Cheng,LI Xianzhong,LI Quangui. Research and application of coal seam pulse hydraulic fracturing technology[J]. Journal of China Coal Society,2011,36(12):1996−2001.
    [13]
    SANG S X,XU H J,FANG L C,et al. Stress relief coalbed methane drainage by surface vertical wells in China[J]. International Journal of Coal Geology,2010,82(3-4):196−203. doi: 10.1016/j.coal.2009.10.016
    [14]
    潘和平,刘国强. 应用BP神经网络预测煤质参数及含气量[J]. 地球科学,1997,22(2):210−214.

    PAN Heping,LIU Guoqiang. Applying back-propagation artificial neural networks to predict coal quality parameters and coalbed gas content[J]. Earth Science,1997,22(2):210−214.
    [15]
    陈涛,张占松,周雪晴,等. 基于测井参数优选的煤层含气量预测模型[J]. 煤田地质与勘探,2021,49(3):227−235,243.

    CHEN Tao,ZHANG Zhansong,ZHOU Xueqing,et al. Prediction model of coalbed methane content based on well logging parameter optimization[J]. Coal Geology & Exploration,2021,49(3):227−235,243.
    [16]
    YANG Z Z,YANG C X,LI X G,et al. Pattern recognition of the vertical hydraulic fracture shapes in coalbed methane reservoirs based on hierarchical Bi-LSTM network[J]. Complexity,2020,2020(1):1734048.
    [17]
    CHEN S,DOU L M,CAI W,et al. Evolution of coal microfracture by cyclic fracturing of liquid nitrogen based on μCT and convolutional neural networks[J]. Rock Mechanics and Rock Engineering,2024,57(3):2103−2124. doi: 10.1007/s00603-023-03649-w
    [18]
    YANG W,LIN B Q,QU Y A,et al. Stress evolution with time and space during mining of a coal seam[J]. International Journal of Rock Mechanics and Mining Sciences,2011,48(7):1145−1152. doi: 10.1016/j.ijrmms.2011.07.006
    [19]
    TU Q Y,CHENG Y P. Stress evolution and coal seam deformation through the mining of a remote upper protective layer[J]. Energy Sources,Part A:Recovery,Utilization,and Environmental Effects,2019,41(3):338−348.
    [20]
    YUAN Z G,SHAO Y H,ZHU Z H. Similar material simulation study on protection effect of steeply inclined upper protective layer mining with varying interlayer distances[J]. Advances in Civil Engineering,2019,2019(1):1−14.
    [21]
    刘绪钢,周涌沂,张骏强,等. 非线性应力作用下裂缝砂岩应力敏感性特征[J]. 西南石油大学学报(自然科学版),2023,45(1):127−135.

    LIU Xugang,ZHOU Yongyi,ZHANG Junqiang,et al. Effect of nonlinear effective pressure on stress sensitivity in fracture sandstones[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2023,45(1):127−135.
    [22]
    吕玉民,汤达祯,李治平,等. 煤层气井动态产能拟合与预测模型[J]. 煤炭学报,2011,36(9):1481−1485.

    LYU Yumin,TANG Dazhen,LI Zhiping,et al. Fitting and predicting models for coalbed methane wells dynamic productivity[J]. Journal of China Coal Society,2011,36(9):1481−1485.
    [23]
    徐慧. 粒子群优化算法改进及其在煤层气产能预测中的应用研究[D]. 徐州:中国矿业大学,2013.

    XU Hui. Improvement of particle swarm optimization algorithm and its application in coalbed methane productivity prediction[D]. Xuzhou:China University of Mining and Technology,2013.
    [24]
    XU X J,RUI X P,FAN Y L,et al. Forecasting of coalbed methane daily production based on T-LSTM neural networks[J]. Symmetry,2020,12(5):861. doi: 10.3390/sym12050861
    [25]
    高翔. 基于SVM煤层气井井底流压预测方法研究[D]. 西安:西安科技大学,2017.

    GAO Xiang. Research on prediction method of bottom hole flowing pressure of coalbed methane well based on SVM[D]. Xi’an:Xi’an University of Science and Technology,2017.
    [26]
    GUO Z X,ZHAO J Z,YOU Z J,et al. Prediction of coalbed methane production based on deep learning[J]. Energy,2021,230:120847. doi: 10.1016/j.energy.2021.120847
    [27]
    韩文龙,王延斌,刘度,等. 煤层气直井产气曲线特征及其与储层条件匹配性[J]. 煤田地质与勘探,2019,47(3):97−104.

    HAN Wenlong,WANG Yanbin,LIU Du,et al. The matching of gas production curve characteristic and reservoir conditions in vertical coalbed methane wells[J]. Coal Geology & Exploration,2019,47(3):97−104.
    [28]
    白建梅,秦义,石惠宁,等. 沁水盆地煤储层应力敏感分析及工艺对策[J]. 石油钻采工艺,2009,31(4):94−96.

    BAI Jianmei,QIN Yi,SHI Huining,et al. Analysis on stress sensitivity of coalbed methane reservoir in Qinshui Basin and Strategies[J]. Oil Drilling & Production Technology,2009,31(4):94−96.
    [29]
    石惠宁,马成宇,梅永贵,等. 樊庄高煤阶煤层气井智能排采技术研究及应用[J]. 石油钻采工艺,2010,32(4):107−111.

    SHI Huining,MA Chengyu,MEI Yonggui,et al. Research and application of intelligent recovery technology for Fanzhuang high rank CBM wells[J]. Oil Drilling & Production Technology,2010,32(4):107−111.
    [30]
    李芳. 煤层气井电潜泵排采技术研究与应用[D]. 青岛:中国石油大学,2011.

    LI Fang. Research and application of electric submersible pump drainage technology in coalbed methane wells[D]. Qingdao:China University of Petroleum,2011.
    [31]
    迟文龙. 基于FSVM的煤层气单井故障诊断研究[D]. 大连:大连理工大学,2013.

    CHI Wenlong. Study on fault diagnosis of coalbed methane single well based on FSVM[D]. Dalian:Dalian University of Technology,2013.
    [32]
    黄鹤. 潘一东煤矿煤层气智能抽采监控装备[J]. 煤矿安全,2018,49(10):106−109.

    HUANG He. Application of coalbed methane intelligent drainage monitoring equipment in panyidong coal mine[J]. Safety in Coal Mines,2018,49(10):106−109.
    [33]
    王清峰,陈航. 瓦斯抽采智能化钻探技术及装备的发展与展望[J]. 工矿自动化,2018,44(11):18−24.

    WANG Qingfeng,CHEN Hang. Development and prospect on intelligent drilling technology and equipment for gas drainage[J]. Industry and Mine Automation,2018,44(11):18−24.
    [34]
    方鹏,姚克,王龙鹏,等. ZDY25000LDK智能化定向钻进装备关键技术研究[J]. 煤田地质与勘探,2022,50(1):72−79. doi: 10.12363/issn.1001-1986.21.10.0597

    FANG Peng,YAO Ke,WANG Longpeng,et al. Research on key technologies of the ZDY25000LDK intelligent directional drilling equipment[J]. Coal Geology & Exploration,2022,50(1):72−79. doi: 10.12363/issn.1001-1986.21.10.0597
    [35]
    田锦州. 煤与煤层气协调开发生产系统智能化设计[J]. 煤炭工程,2022,54(12):19−23.

    TIAN Jinzhou. Intelligent design of coordinated development and production system of coal and coalbed methane[J]. Coal Engineering,2022,54(12):19−23.
    [36]
    张抗,张立勤,刘冬梅. 近年中国油气勘探开发形势及发展建议[J]. 石油学报,2022,43(1):15−28,111. doi: 10.1038/s41401-021-00637-0

    ZHANG Kang,ZHANG Liqin,LIU Dongmei. Situation of China’s oil and gas exploration and development in recent years and relevant suggestions[J]. Acta Petrolei Sinica,2022,43(1):15−28,111. doi: 10.1038/s41401-021-00637-0
    [37]
    吴西顺,孙张涛,杨添天,等. 全球非常规油气勘探开发进展及资源潜力[J]. 海洋地质前沿,2020,36(4):1−17.

    WU Xishun,SUN Zhangtao,YANG Tiantian,et al. Global progress in exploration and development of unconvetional hydrocarbons and assessment of resources potential[J]. Marine Geology Frontiers,2020,36(4):1−17.
    [38]
    张群,孙四清,降文萍. 碎软低渗煤层煤矿区煤层气勘探开发关键技术及发展方向[J]. 石油学报,2024,45(5):855−865. doi: 10.7623/syxb202405007

    ZHANG Qun,SUN Siqing,JIANG Wenping. Key technologies and development direction of CBM exploration and development in coal mine area of fractured soft and low permeablity coal seams[J]. Acta Petrolei Sinica,2024,45(5):855−865. doi: 10.7623/syxb202405007
    [39]
    ZOU Q L,CHEN Z H,CHENG Z H,et al. Evaluation and intelligent deployment of coal and coalbed methane coupling coordinated exploitation based on Bayesian network and cuckoo search[J]. International Journal of Mining Science and Technology,2022,32(6):1315−1328. doi: 10.1016/j.ijmst.2022.11.002
    [40]
    QIAO L. The applied prospect of coal-bed methane productivity evaluation with logging technology[J]. Advanced Materials Research,2013,868:673−676. doi: 10.4028/www.scientific.net/AMR.868.673
    [41]
    赵智博. 基于多源异构数据的煤层气知识图谱构建与应用研究[D]. 徐州:中国矿业大学,2023.

    ZHAO Zhibo. Construction and application of coalbed methane knowledge map based on multi-source heterogeneous data[D]. Xuzhou:China University of Mining and Technology,2023.
    [42]
    钟江城. 基于CT可视化的深部煤体损伤和渗透率演化规律研究[D]. 北京:中国矿业大学(北京),2018.

    ZHONG Jiangcheng. Study on the evolution law of deep coal damage and permeability based on CT visualization[D]. Beijing:China University of Mining & Technology,Beijing,2018.
    [43]
    TAN Y L,PAN Z J,LIU J S,et al. Experimental study of impact of anisotropy and heterogeneity on gas flow in coal. Part I:Diffusion and adsorption[J]. Fuel,2018,232:444−453. doi: 10.1016/j.fuel.2018.05.173
    [44]
    杜新锋. 煤层气地面与井下一体化抽采三维可视化管理系统关键技术[J]. 煤田地质与勘探,2011,39(5):31−34. doi: 10.3969/j.issn.1001-1986.2011.05.008

    DU Xinfeng. 3D visualization management system for the integrated drainage of coalbed methane from surface and underground[J]. Coal Geology & Exploration,2011,39(5):31−34. doi: 10.3969/j.issn.1001-1986.2011.05.008
    [45]
    李贵红,赵佩佩,吴信波. 煤层气地质工程一体化平台的建设构想[J]. 煤田地质与勘探,2022,50(9):130−136. doi: 10.12363/issn.1001-1986.21.11.0626

    LI Guihong,ZHAO Peipei,WU Xinbo. Construction concept of integrated geological engineering platform for coalbed methane[J]. Coal Geology & Exploration,2022,50(9):130−136. doi: 10.12363/issn.1001-1986.21.11.0626
    [46]
    孟召平,章朋,田永东,等. 围压下煤储层应力-应变、渗透性与声发射试验分析[J]. 煤炭学报,2020,45(7):2544−2551.

    MENG Zhaoping,ZHANG Peng,TIAN Yongdong,et al. Experimental analysis of stress-strain,permeability and acoustic emission of coal reservoir under different confining pressures[J]. Journal of China Coal Society,2020,45(7):2544−2551.
    [47]
    石智军,姚克,姚宁平,等. 我国煤矿井下坑道钻探技术装备40年发展与展望[J]. 煤炭科学技术,2020,48(4):1−34.

    SHI Zhijun,YAO Ke,YAO Ningping,et al. 40 years of development and prospect on underground coal mine tunnel drilling technology and equipment in China[J]. Coal Science and Technology,2020,48(4):1−34.
    [48]
    张遂安,刘欣佳,温庆志,等. 煤层气增产改造技术发展现状与趋势[J]. 石油学报,2021,42(1):105−118. doi: 10.7623/syxb202101010

    ZHANG Suian,LIU Xinjia,WEN Qingzhi,et al. Development situation and trend of stimulation and reforming technology of coalbed methane[J]. Acta Petrolei Sinica,2021,42(1):105−118. doi: 10.7623/syxb202101010
    [49]
    张聪,李可心,贾慧敏,等. 郑庄北中深部煤层气水平井产能影响因素及开发技术优化[J]. 煤田地质与勘探,2024,52(6):21−32.

    ZHANG Cong,LI Kexin,JIA Huimin,et al. Factors influencing the productivity and technology optimization of horizontal wells for moderately deep coalbed methane in the northern Zhengzhuang block[J]. Coal Geology & Exploration,2024,52(6):21−32.
    [50]
    曾雯婷,徐凤银,张雷,等. 鄂尔多斯盆地东缘深部煤层气排采工艺技术进展与启示[J]. 煤田地质与勘探,2024,52(2):23−32.

    ZENG Wenting,XU Fengyin,ZHANG Lei,et al. Deep coalbed methane production technology for the eastern margin of the Ordos Basin:Advances and their implications[J]. Coal Geology & Exploration,2024,52(2):23−32.
    [51]
    周德华,陈刚,陈贞龙,等. 中国深层煤层气勘探开发进展、关键评价参数与前景展望[J]. 天然气工业,2022,42(6):43−51.

    ZHOU Dehua,CHEN Gang,CHEN Zhenlong,et al. Exploration and development progress,key evaluation parameters and prospect of deep CBM in China[J]. Natural Gas Industry,2022,42(6):43−51.
    [52]
    秦勇,申建,史锐. 中国煤系气大产业建设战略价值与战略选择[J]. 煤炭学报,2022,47(1):371−387.

    QIN Yong,SHEN Jian,SHI Rui. Strategic value and choice on construction of large CMG industry in China[J]. Journal of China Coal Society,2022,47(1):371−387.
    [53]
    梁冰,石迎爽,孙维吉,等. 中国煤系“三气” 成藏特征及共采可能性[J]. 煤炭学报,2016,41(1):167−173.

    LIANG Bing,SHI Yingshuang,SUN Weiji,et al. Reservoir forming characteristics of “the three gases” in coal measure and the possibility of commingling in China[J]. Journal of China Coal Society,2016,41(1):167−173.
    [54]
    秦勇,吴建光,李国璋,等. 煤系气开采模式探索及先导工程示范[J]. 煤炭学报,2020,45(7):2513−2522.

    QIN Yong,WU Jianguang,LI Guozhang,et al. Patterns and pilot project demonstration of coal measures gas production[J]. Journal of China Coal Society,2020,45(7):2513−2522.
    [55]
    孟尚志,李勇,王建中,等. 煤系“三气” 单井筒合采可行性分析:基于现场试验井的讨论[J]. 煤炭学报,2018,43(1):168−174.

    MENG Shangzhi,LI Yong,WANG Jianzhong,et al. Co-production feasibility of “Three gases” in coal measures:Discussion based on field test well[J]. Journal of China Coal Society,2018,43(1):168−174.
    [56]
    侯晓伟,朱炎铭,付常青,等. 沁水盆地压裂裂缝展布及对煤系“三气” 共采的指示意义[J]. 中国矿业大学学报,2016,45(4):729−738.

    HOU Xiaowei,ZHU Yanming,FU Changqing,et al. Fractures distribution of Qinshui basin and its indicative significance to unconventional gas co-exploration in coal measures[J]. Journal of China University of Mining & Technology,2016,45(4):729−738.

Catalog

    Article views (37) PDF downloads (30) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return