WANG Haijun,ZHENG Sanlong,WANG Xiangye,et al. Transparent exploration technology for hidden disaster-causing factors of geological structure:taking Tunbao Coal Mine in Xinjiang as an example[J]. Coal Science and Technology,2024,52(9):173−188
. DOI: 10.12438/cst.2024-0559Citation: |
WANG Haijun,ZHENG Sanlong,WANG Xiangye,et al. Transparent exploration technology for hidden disaster-causing factors of geological structure:taking Tunbao Coal Mine in Xinjiang as an example[J]. Coal Science and Technology,2024,52(9):173−188 . DOI: 10.12438/cst.2024-0559 |
Hidden disaster-causing factors in coal mines are key geological factors that restrict the safety, high efficiency, green and intelligent mining, and transparent geology is an important technical means to realize the detection of hidden disaster-causing factors in coal mines, among them, geological structure transparent exploration is the most important. In order to build a transparent exploration system for hidden disaster-causing factors of geological structure that applies to different geological conditions or coalfield areas, first, based on analysis of factors causing hidden structural disasters, technical system of rapid investigation of factors causing structural hidden disasters is put forward, which is based on the regional structural analysis and the joint investigation of the ground and underground, effectively delineate the mine geological structure anomaly development area and analyze its distribution law. Based on the previous borehole data and 3D seismic data, the coal seam thickness, fault structure and roof and floor structure undulation patterns are analyzed. Comprehensive technical means such as channel wave exploration, directional drilling, advanced geophysical prospecting, earthquake while mining/driving, cuttings recording, rapid realistic description of roadway are adopted, further realizing the gradual transparency of the geological structure of the mining face, adopting the methods of theoretical analysis, engineering analogy, numerical simulation, similar material simulation, field engineering verification. Correlation between geological structure types, attribute characteristics and mine disasters, such as coal seam thickness, coal rock mass structure, gas emission, gas pressure, roof strata behavior, is analyzed. Response law of gas parameters and roof/ground pressure disasters in different areas of the mining face passing through the fault structure under the mining condition is studied. Monitoring and early-warning of the hidden disaster-causing factors of the face structures are realized by selecting the threshold value of the characteristic parameters, and the digital expression of the different geological structures and their disaster attributes is realized by using the digital technology, 3D transparent display of hidden disaster-causing factors is realized by modeling software. The technical system of geological structure exploration with 4 levels of regional structure geology research, exploration of hidden disaster-causing factors, scientific evaluation of disaster-causing threat and geological structure transparency is constructed, and carried out engineering practice in Tunbao Coal Mine. the results show that the types of geological structures in coal mine are complex, and there are not only graben type, barrier type, echelon type and flexure type of fault structures, but also small-scale scouring zone, fault and fracture zone. Complex geological structure is the key geological factor to induce mine gas outburst, roof disaster, stress concentration and mine rock burst. The influence of faults on stress concentration of roadway is 10 ~ 15 m, and the influence on working face is 20 ~ 30 m. There are gas enrichment areas in the working face, the distribution of gas content and gas emission has obvious zonation, and the zonation is controlled by faults. The content of coal seam gas and the amount of gas emission show logarithmic correlation with the distance between the working face and the fault, and increase obviously at the distance of 25 m from the fault, and change little in the area of more than 25 m, in the region less than 25 m, it increases exponentially with the decrease of distance. 20 m before and after the first pressure position and 30 m after the face-to-face are medium impact danger areas, the coal pillar affected area in goaf, 50 m before and after the final line, and 30 m before and after the fault with drop greater than 4 m are weak impact risk areas. The overlapping area of hidden disaster-causing factors such as rock burst, roof and gas, is the key area of disaster prevention and control. The research result realizes seamless connection between the hidden disaster-causing factors of geological structure and the mine disaster, and provides a feasible technical path for the development of traditional geological exploration in coal mine area to digitalization and intelligentization.
[1] |
董书宁,刘再斌,程建远,等. 煤炭智能开采地质保障技术及展望[J]. 煤田地质与勘探,2021,49(1):21−31. doi: 10.3969/j.issn.1001-1986.2021.01.003
DONG Shuning,LIU Zaibin,CHENG Jianyuan,et al. Technologies and prospect of geological guarantee for intelligent coal mining[J]. Coal Geology & Exploration,2021,49(1):21−31. doi: 10.3969/j.issn.1001-1986.2021.01.003
|
[2] |
王国法,任怀伟,赵国瑞,等. 煤矿智能化十大“痛点”解析及对策[J]. 工矿自动化,2021,47(6):1−11.
WANG Guofa,REN Huaiwei,ZHAO Guorui,et al. Analysis and countermeasures of ten “pain points” of intelligent coal mine[J]. Journal of Mine Automation,2021,47(6):1−11.
|
[3] |
卢新明,阚淑婷. 煤炭精准开采地质保障与透明地质云计算技术[J]. 煤炭学报,2019,44(8):2296−2305.
LU Xinming,KAN Shuting. Geological guarantee and transparent geological cloud computing technology of precision coal mining[J]. Journal of China Coal Society,2019,44(8):2296−2305.
|
[4] |
王海军,王相业,吴艳,等. 井巷煤岩层精细对比技术[J]. 地质论评,2024,70(S1):263−265.
WANG Haijun,WANG Xiangye,WU Yan,et al. Fine contrast technology of coal seam in mine roadway[J]. Geological Review,2024,70(S1):263−265.
|
[5] |
袁亮,张平松. 煤炭精准开采透明地质条件的重构与思考[J]. 煤炭学报,2020,45(7):2346−2356.
YUAN Liang,ZHANG Pingsong. Framework and thinking of transparent geological conditions for precise mining of coal[J]. Journal of China Coal Society,2020,45(7):2346−2356.
|
[6] |
刘再斌,刘程,刘文明,等. 透明工作面多属性动态建模技术[J]. 煤炭学报,2020,45(7):2628−2635.
LIU Zaibin,LIU Cheng,LIU Wenming,et al. Multi-attribute dynamic modeling technique for transparent working face[J]. Journal of China Coal Society,2020,45(7):2628−2635.
|
[7] |
刘小雄,王海军. 薄煤层智能开采工作面煤层透明化地质勘查技术[J]. 煤炭科学技术,2022,50(7):67−74.
LIU Xiaoxiong,WANG Haijun. Transparent geological exploration technology of coal seam on the working surface of intelligent mining of thin coal seam[J]. Coal Science and Technology,2022,50(7):67−74.
|
[8] |
高北斗,王海超,田继军,等. 准南煤田硫磺沟矿区向斜−承压式煤层气富集模式[J]. 现代地质,2020,34(2):281−288.
GAO Beidou,WANG Haichao,TIAN Jijun,et al. Syncline-confined-water model of coalbed methane enrichment area in Liuhuanggou mining area,southern Junggar Coalfield[J]. Geoscience,2020,34(2):281−288.
|
[9] |
高崇龙,王剑,刘明,等. 准南侏罗−白垩纪原型盆地边界变迁及其沉积物源响应[J]. 地球科学,2024,49(1):103−122.
GAO Chonglong,WANG Jian,LIU Ming,et al. Boundary changes of Jurassic-cretaceous prototype basin of southern Junggar and responses of sedimentary provenance and depositional systems[J]. Earth Science,2024,49(1):103−122.
|
[10] |
鲁雪松,赵孟军,张凤奇,等. 准噶尔盆地南缘前陆冲断带超压发育特征、成因及其控藏作用[J]. 石油勘探与开发,2022,49(5):859−870. doi: 10.11698/PED.20220103
LU Xuesong,ZHAO Mengjun,ZHANG Fengqi,et al. Characteristics,origin and controlling effects on hydrocarbon accumulation of overpressure in foreland thrust belt of southern margin of Junggar Basin,NW China[J]. Petroleum Exploration and Development,2022,49(5):859−870. doi: 10.11698/PED.20220103
|
[11] |
王海军. 柳江盆地岩浆侵入对煤层顶板岩石力学特征的影响[J]. 煤炭学报,2020,45(11):3879−3894.
WANG Haijun. Influence of magma intrusion on rock mechanics characteristics of coal seam roof in Liujiang Basin[J]. Journal of China Coal Society,2020,45(11):3879−3894.
|
[12] |
王海军. 柳江盆地岩浆活动对主力煤田水文地质特征的影响[J]. 煤炭学报,2021,46(5):1670−1684.
WANG Haijun. Influence of magmatic activities in Liujiang Basin on hydrogeological characteristics of main coalfields[J]. Journal of China Coal Society,2021,46(5):1670−1684.
|
[13] |
汤达祯,杨曙光,唐淑玲,等. 准噶尔盆地煤层气勘探开发与地质研究进展[J]. 煤炭学报,2021,46(8):2412−2425.
TANG Dazhen,YANG Shuguang,TANG Shuling,et al. Advance on exploration-development and geological research of coalbed methane in the Junggar Basin[J]. Journal of China Coal Society,2021,46(8):2412−2425.
|
[14] |
王海军,刘善德,马良,等. 盘关向斜火烧铺井田重烃含量异常的控制因素[J]. 煤炭学报,2022,47(9):3421−3441.
WANG Haijun,LIU Shande,MA Liang,et al. Controlling factors of abnormal heavy hydrocarbon content in Huoshaopu mine field of Pansyncline[J]. Journal of China Coal Society,2022,47(9):3421−3441.
|
[15] |
木宗勇. 屯宝煤矿三维地震勘探地震属性对断层解释的应用[J]. 科技创新与应用,2016,6(14):26.
|
[16] |
刘万里,张学亮,王世博. 采煤工作面煤层三维模型构建及动态修正技术[J]. 煤炭学报,2020,45(6):1973−1983.
LIU Wanli,ZHANG Xueliang,WANG Shibo. Modeling and dynamic correction technology of 3D coal seam model for coal-mining face[J]. Journal of China Coal Society,2020,45(6):1973−1983.
|
[17] |
程建远,王保利,范涛,等. 煤矿地质透明化典型应用场景及关键技术[J]. 煤炭科学技术,2022,50(7):1−12.
CHENG Jianyuan,WANG Baoli,FAN Tao,et al. Typical application scenes and key technologies of coal mine geological transparency[J]. Coal Science and Technology,2022,50(7):1−12.
|
[18] |
王保利,程建远,崔伟雄,等. 采煤工作面随采地震探测技术研究进展:以贵州岩脚矿12701工作面为例[J]. 煤炭学报,2021,46(S1):406−413.
WANG Baoli,CHENG Jianyuan,CUI Weixiong,et al. Research progress of seismic-while-mining detection technology in coal face:an case study in 12701 working face in Guizhou Yanjiao Coal Mine[J]. Journal of China Coal Society,2021,46(S1):406−413.
|
[19] |
程建远,朱梦博,王云宏,等. 煤炭智能精准开采工作面地质模型梯级构建及其关键技术[J]. 煤炭学报,2019,44(8):2285−2295.
CHENG Jianyuan,ZHU Mengbo,WANG Yunhong,et al. Cascade construction of geological model of longwall panel for intelligent precision coal mining and its key technology[J]. Journal of China Coal Society,2019,44(8):2285−2295.
|
[20] |
吴国庆,马彦龙. 地质透明化工作面内多种异常体的槽波解释方法研究[J]. 煤炭科学技术,2023,51(5):149−160.
WU Guoqing,MA Yanlong. Research on the interpretation method of channel waves for various abnormal bodies in geologically transparent working faces[J]. Coal Science and Technology,2023,51(5):149−160.
|
[21] |
吴文慧. 无线电波透视技术在回采工作面隐伏构造探测中的应用[J]. 山西冶金,2022,45(3):304−305.
WU Wenhui. Application of radio wave perspective technology in concealed structure detection of mining face[J]. Shanxi Metallurgy,2022,45(3):304−305.
|
[22] |
范涛. 基于钻孔瞬变电磁的煤层气压裂效果检测方法[J]. 煤炭学报,2020,45(9):3195−3207.
FAN Tao. Coalbed methane fracturing effectiveness test using bore-hole transient electromagnetic method[J]. Journal of China Coal Society,2020,45(9):3195−3207.
|
[23] |
晏雁. 微动勘探技术在煤矿隐蔽致灾地质因素探测中的应用[J]. 工程地球物理学报,2024,21(4):578−586.
YAN Yan. The application of microtremor exploration technology in the detection of hidden disaster causing geological factors in coal mines[J]. Chinese Journal of Engineering Geophysics,2024,21(4):578−586.
|
[24] |
袁亮,张平松. TBM施工岩巷掘探一体化技术研究进展与思考[J]. 煤田地质与勘探,2023,51(1):21−32. doi: 10.12363/issn.1001-1986.22.12.0967
YUAN Liang,ZHANG Pingsong. Research progress and thinking on integrated tunneling and detection technology of rock roadway with TBM[J]. Coal Geology & Exploration,2023,51(1):21−32. doi: 10.12363/issn.1001-1986.22.12.0967
|
[25] |
王保利,程建远,金丹,等. 煤矿井下随掘地震震源特征及探测性能研究[J]. 煤田地质与勘探,2022,50(1):10−19. doi: 10.12363/issn.1001-1986.21.11.0639
WANG Baoli,CHENG Jianyuan,JIN Dan,et al. Characteristics and detection performance of the source of seismic while excavating in underground coal mines[J]. Coal Geology & Exploration,2022,50(1):10−19. doi: 10.12363/issn.1001-1986.21.11.0639
|
[26] |
程建远,陆自清,蒋必辞,等. 煤矿巷道快速掘进的“长掘长探”技术[J]. 煤炭学报,2022,47(1):404−412.
CHENG Jianyuan,LU Ziqing,JIANG Bici,et al. A novel technology of “long excavation/long detection” for rapid excavation in coal mine roadway[J]. Journal of China Coal Society,2022,47(1):404−412.
|
[27] |
蒋必辞,程建远,李萍,等. 基于钻孔雷达的透明工作面构建方法[J]. 煤田地质与勘探,2022,50(1):128−135. doi: 10.12363/issn.1001-1986.21.10.0598
JIANG Bici,CHENG Jianyuan,LI Ping,et al. Construction method of transparent working face based on borehole radar[J]. Coal Geology & Exploration,2022,50(1):128−135. doi: 10.12363/issn.1001-1986.21.10.0598
|
[28] |
刘四新,宋梓豪,程建远,等. 利用钻孔雷达探测煤矿井下顶底板界面的数值模拟研究[J]. 世界地质,2021,40(3):711−720. doi: 10.3969/j.issn.1004-5589.2021.03.024
LIU Sixin,SONG Zihao,CHENG Jianyuan,et al. Numerical simulation research on detecting underground coal mine roof and floor using borehole radar[J]. Global Geology,2021,40(3):711−720. doi: 10.3969/j.issn.1004-5589.2021.03.024
|
[29] |
姬勇力,李智强,宋加加,等. 一种低阻地层孔间电磁波CT正反演方法[J]. 电波科学学报,2023,38(4):657−664,685. doi: 10.12265/j.cjors.2023024
JI Yongli,LI Zhiqiang,SONG Jiajia,et al. A cross-hole electromagnetic CT forward and inversion method in low resistivity formation[J]. Chinese Journal of Radio Science,2023,38(4):657−664,685. doi: 10.12265/j.cjors.2023024
|
[30] |
蒋辉,赵晓鹏,赵永贵. 双通道跨孔雷达CT原理与应用[J]. 地球物理学进展,2023,38(2):814−822. doi: 10.6038/pg2023GG0294
JIANG Hui,ZHAO Xiaopeng,ZHAO Yonggui. Principle and application of dual-channel cross-bore radar CT[J]. Progress in Geophysics,2023,38(2):814−822. doi: 10.6038/pg2023GG0294
|
[31] |
LIU G R,YAO K Q,NIU F Y,et al. Deep investigation of muography in discovering geological structures in mineral exploration:a case study of Zaozigou gold mine[J]. Geophysical Journal International,2024,237(1):588−603. doi: 10.1093/gji/ggae057
|
[32] |
毛善君,鲁守明,李存禄,等. 基于精确大地坐标的煤矿透明化智能综采工作面自适应割煤关键技术研究及系统应用[J]. 煤炭学报,2022,47(1):515−526.
MAO Shanjun,LU Shouming,LI Cunlu,et al. Key technologies and system of adaptive coal cutting in transparent intelligent fully mechanized coal mining face based on precisegeodetic coordinates[J]. Journal of China Coal Society,2022,47(1):515−526.
|
[33] |
王嘉伟,王海军,吴汉宁,等. 基于三维地质建模技术的煤矿隐蔽致灾因素透明化研究[J]. 工矿自动化,2024,50(3):71−81,121.
WANG Jiawei,WANG Haijun,WU Hanning,et al. Research on transparency of hidden disaster causing factors in coal mines based on 3D geological modeling technology[J]. Journal of Mine Automation,2024,50(3):71−81,121.
|
[34] |
靳德武,李鹏,赵春虎,等. 采场三维充水结构地质建模及动态可视化实现[J]. 煤炭科学技术,2020,48(7):143−149.
JIN Dewu,LI Peng,ZHAO Chunhu,et al. Geological modeling and implementation on dynamic visualization of three-dimensional water filling structure in stope of underground mine[J]. Coal Science and Technology,2020,48(7):143−149.
|
[35] |
王海军,刘善德,马良,等. 盘县煤田滑脱构造特征及其研究意义[J]. 中国煤炭地质,2023,35(2):1−9,16. doi: 10.3969/j.issn.1674-1803.2023.02.01
WANG Haijun,LIU Shande,MA Liang,et al. Characteristics of detachment structures and research significance in Panxian coal field[J]. Coal Geology of China,2023,35(2):1−9,16. doi: 10.3969/j.issn.1674-1803.2023.02.01
|
[36] |
王海军,马良. 陕北侏罗纪煤田三角洲平原沉积环境及其岩石力学特征[J]. 煤田地质与勘探,2019,47(3):61−69. doi: 10.3969/j.issn.1001-1986.2019.03.011
WANG Haijun,MA Liang. Study on sediment environment and rock mechanics characteristics of the delta plain of Jurassic coalfield in northern Shaanxi[J]. Coal Geology & Exploration,2019,47(3):61−69. doi: 10.3969/j.issn.1001-1986.2019.03.011
|
[37] |
王海军. 煤层顶板沉积环境对其稳定性影响研究[J]. 煤炭科学技术,2017,45(2):178−184.
WANG Haijun. Study on impact of sedimentary environment to stability of seam roof[J]. Coal Science and Technology,2017,45(2):178−184.
|
[38] |
王海军,刘善德,马良,等. 面向智能化开采的矿井煤岩层综合对比技术[J]. 煤田地质与勘探,2022,50(2):24−38. doi: 10.12363/issn.1001-1986.21.04.0238
WANG Haijun,LIU Shande,MA Liang,et al. Comprehensive correlation technology of coal and rock layers in mines for intelligent mining[J]. Coal Geology & Exploration,2022,50(2):24−38. doi: 10.12363/issn.1001-1986.21.04.0238
|
[39] |
韩珂,王海军. 强冲击地压矿井煤层顶板覆岩结构研究:以孟村煤矿为例[J]. 中国煤炭地质,2024,36(3):47−59. doi: 10.3969/j.issn.1674-1803.2024.03.09
HAN Ke,WANG Haijun. Study on roof deposition characteristics of coal seam in high underground pressure:a case study of the Mengcun Coal Mine[J]. Coal Geology of China,2024,36(3):47−59. doi: 10.3969/j.issn.1674-1803.2024.03.09
|
[40] |
原长锁,王峰. 综采工作面透明化开采模式及关键技术[J]. 工矿自动化,2022,48(3):11−15,31.
YUAN Changsuo,WANG Feng. Transparent mining mode and key technologies of fully mechanized working face[J]. Journal of Mine Automation,2022,48(3):11−15,31.
|
[41] |
薛国华. 基于透明地质的综采工作面三维煤层建模[J]. 工矿自动化,2022,48(4):135−141.
XUE Guohua. Three-dimensional coal seam modeling of fully mechanized working face based on transparent geology[J]. Journal of Mine Automation,2022,48(4):135−141.
|
[42] |
孙四清,李文博,张俭,等. 煤矿井下长钻孔分段水力压裂技术研究进展及发展趋势[J]. 煤田地质与勘探,2022,50(8):1−15. doi: 10.12363/issn.1001-1986.22.06.0520
SUN Siqing,LI Wenbo,ZHANG Jian,et al. Research progress and development trend of staged hydraulic fracturing technology in long-borehole underground coal mine[J]. Coal Geology & Exploration,2022,50(8):1−15. doi: 10.12363/issn.1001-1986.22.06.0520
|
[43] |
李泉新,许超,刘建林,等. 煤矿井下全域化瓦斯抽采定向钻进关键技术与工程实践[J]. 煤炭学报,2022,47(8):3108−3116.
LI Quanxin,XU Chao,LIU Jianlin,et al. Key technology and practice of directional drilling for gas drainage in all the mining time and space in underground coal mine[J]. Journal of China Coal Society,2022,47(8):3108−3116.
|
[44] |
石智军,姚克,姚宁平,等. 我国煤矿井下坑道钻探技术装备40 年发展与展望[J]. 煤炭科学技术,2020,48(4):1−34.
SHI Zhijun,YAO Ke,YAO Ningping,et al. 40 years of development and prospect on underground coal mine tunnel drilling technology and equipment in China[J]. Coal Science and Technology,2020,48(4):1−34.
|
[45] |
陈庆丰. 屯宝煤矿近距离煤层开采综合防灭火技术研究与应用[D]. 北京:煤炭科学研究总院,2017.
CHEN Qingfeng. Research and application of comprehensive fire prevention and extinguishing technology in close-distance coal seam mining in Tunbao Coal Mine[D]. Beijing:Chinese Institute of Coal Science,2017.
|
[46] |
郑凯歌,杨俊哲,李彬刚,等. 基于垮落充填的坚硬顶板分段压裂弱化解危技术[J]. 煤田地质与勘探,2021,49(5):77−87.
ZHENG Kaige,YANG Junzhe,LI Bingang,et al. Collapse filling-based technology of weakening and danger-solving by staged fracturing in hard roof[J]. Coal Geology & Exploration,2021,49(5):77−87.
|
[47] |
王国法,潘一山,赵善坤,等. 冲击地压煤层如何实现安全高效智能开采[J]. 煤炭科学技术,2024,52(1):1−14. doi: 10.12438/cst.2023-1656
WANG Guofa,PAN Yishan,ZHAO Shankun,et al. How to realize safe-efficient-intelligent mining of rock burst coal seam[J]. Coal Science and Technology,2024,52(1):1−14. doi: 10.12438/cst.2023-1656
|
[48] |
李鹏,程建远. 回采工作面煤层三维建模技术及其在智能开采中的应用[J]. 煤矿安全,2021,52(8):156−161.
LI Peng,CHENG Jianyuan. 3D modeling technology of coal seam in working face and its application in intelligent mining[J]. Safety in Coal Mines,2021,52(8):156−161.
|
[49] |
孟凡刚,马亚杰,王国华,等. 基于钻孔勘探数据的煤层厚度分布与构造预判[J]. 煤炭科学技术,2017,45(8):233−237,211.
MENG Fangang,MA Yajie,WANG Guohua,et al. Seam thickness distribution and tectonic prediction based on exploration data from drilling[J]. Coal Science and Technology,2017,45(8):233−237,211.
|
[50] |
张清清. 断层破碎区动压巷道稳定性分析及支护参数优化[J]. 煤炭技术,2022,41(4):49−52.
ZHANG Qingqing. Stability controlling analysis and support parameters optimization of roadway with dynamic pressure in fault broken zone[J]. Coal Technology,2022,41(4):49−52.
|
[51] |
李海潮. 屯宝矿综放工作面煤柱巷道围岩破坏特征与控制对策[J]. 煤炭技术,2021,40(11):35−40.
LI Haichao. Destruction characteristics and control countermeasures of coal pillar roadway in fully mechanized caving face of tunbao mine[J]. Coal Technology,2021,40(11):35−40.
|
[52] |
刘明,曹民远,吴玉海,等. 屯宝煤矿逆断层破碎带巷道变形控制研究[J]. 工矿自动化,2020,46(4):98−103.
LIU Ming,CAO Minyuan,WU Yuhai,et al. Research on deformation control of roadway in reverse fault fracture zone of Tunbao Coal Mine[J]. Journal of Mine Automation,2020,46(4):98−103.
|
[53] |
来兴平,郑建伟,陈建强,等. 断层影响区破碎煤岩体深层临界失稳范围确定[J]. 煤炭学报,2015,40(S1):1−5.
LAI Xingping,ZHENG Jianwei,CHEN Jianqiang,et al. Comprehensive identification of rock-coal mass internal critical destabilization in fault influenced broken zone[J]. Journal of China Coal Society,2015,40(S1):1−5.
|
1. |
杨科,何淑欣,何祥,初茉,周伟,袁宁,陈登红,龚鹏,张元春. 煤电化基地大宗固废“三化”协同利用基础与技术. 煤炭科学技术. 2024(04): 69-82 .
![]() | |
2. |
武振,商和福,宗宪生. 济三矿煤矸井下原位智能分选系统及技术研究. 煤炭科技. 2024(04): 186-191+196 .
![]() | |
3. |
于斌,邰阳,徐刚,李勇,李东印,王世博,匡铁军,孟二存. 千万吨级综放工作面智能化放煤理论及关键技术. 煤炭科学技术. 2024(09): 48-67 .
![]() | |
4. |
王思云,任美嘉,周进生. 任家庄煤矿绿色充填示范工程经济社会效益评价研究. 能源科技. 2024(06): 27-30+35 .
![]() |