Advance Search
ZHAO Maoping,WU Zhu. Technology and engineering practice of self-flowing filling and subsidence reduction of fly ash matrix in valley mountain area[J]. Coal Science and Technology,2024,52(11):309−322. DOI: 10.12438/cst.2024-0552
Citation: ZHAO Maoping,WU Zhu. Technology and engineering practice of self-flowing filling and subsidence reduction of fly ash matrix in valley mountain area[J]. Coal Science and Technology,2024,52(11):309−322. DOI: 10.12438/cst.2024-0552

Technology and engineering practice of self-flowing filling and subsidence reduction of fly ash matrix in valley mountain area

More Information
  • Received Date: April 25, 2024
  • Available Online: November 01, 2024
  • Filling mining is a technology that can curb land subsidence, efficiently dispose of industrial solid waste, and quickly liberate the “three underground” coal resources. This article focuses on controlling mining subsidence in the 4603 (2) working face and 4604 (1) working face of Shanxi Shenzhou Coal Industry Co., Ltd. It conducts in-depth research on the determination of fly ash composition, testing of filling slurry fluidity, engineering practice of filling mining technology, and the entire process of subsidence observation. The results indicate that: the specialized auxiliary materials developed based on fly ash can fully stimulate the potential activity of fly ash. A flowability test mold was used to test the flowability of the filling slurry quickly, and the upper limit of the concentration of the self-flowing filling slurry was determined to be 55%. We have developed a bag cycle filling process with a filling step distance of 2.4 m, which includes “mining → filling → mining → filling”. We have mastered the strength evolution characteristics of filling materials at different ages and established a correlation equation between the strength of filling materials and time length. After 60 days of age, the strength of the consolidated specimens is stable at 3.0MPa, meeting the filling design requirements of 2.0 MPa for the final strength of filling materials; After filling with high-concentration slurry from the terrain, the maximum subsidence of the working face is −156 mm and the maximum subsidence of the strike is −111 mm, achieving the control goal of surface subsidence less than 200 mm. This ensures the safe use of large garbage treatment stations on the ground and dense buildings and structures in surrounding coal villages. The research results can provide a reference for filling mining in similar valley mountain mining areas.

  • [1]
    张吉雄,张强,周楠,等. 煤基固废充填开采技术研究进展与展望[J]. 煤炭学报,2022,47(12):4167−4181.

    ZHANG Jixiong,ZHANG Qiang,ZHOU Nan,et al. Research progress and prospect of coal based solid waste backfilling mining technology[J]. Journal of China Coal Society,2022,47(12):4167−4181.
    [2]
    张进鹏,李扬,赵炜,等. 不同岩石强度裂隙岩体约束自应力浆液加固试验研究与应用[J]. 煤炭学报,2023,48(9):3347−3359.

    ZHANG Jinpeng,LI Yang,ZHAO Wei,et al. Test and application of self-stress slurry reinforcement for fractured rock masses with different strength[J]. Journal of China Coal Society,2023,48(9):3347−3359.
    [3]
    胡炳南. 我国煤矿充填开采技术及其发展趋势[J]. 煤炭科学技术,2012,40(11):1−5,18.

    HU Bingnan. Backfill mining technology and development tendency in China coal mine[J]. Coal Science and Technology,2012,40(11):1−5,18.
    [4]
    许家林,轩大洋,朱卫兵,等. 基于关键层控制的部分充填采煤技术[J]. 采矿与岩层控制工程学报,2019,1(2):69−76.

    XU Jialin,XUAN Dayang,ZHU Weibing,et al. Partial backfilling coal mining technology based on key strata control[J]. Journal of Mining and Strata Control Engineering,2019,1(2):69−76.
    [5]
    朱磊,古文哲,宋天奇,等. 采空区煤矸石浆体充填技术研究进展与展望[J]. 煤炭科学技术,2023,51(2):143−154.

    ZHU Lei,GU Wenzhe,SONG Tianqi,et al. Research progress and prospect of coal gangue slurry backfilling technology in goaf[J]. Coal Science and Technology,2023,51(2):143−154.
    [6]
    冯光明,孙春东,王成真,等. 超高水材料采空区充填方法研究[J]. 煤炭学报,2010,35(12):1963−1968.

    FENG Guangming,SUN Chundong,WANG Chengzhen,et al. Research on goaf filling methods with super high-water material[J]. Journal of China Coal Society,2010,35(12):1963−1968.
    [7]
    张健,王川,李召峰,等. 赤泥基绿色高性能注浆材料工程特性试验研究[J]. 岩石力学与工程学报,2022,41(S2):3339−3352.

    ZHANG Jian,WANG Chuan,LI Zhaofeng,et al. Experimental study on the engineering charateristics of red mud-based green high-performance grouting material[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(S2):3339−3352.
    [8]
    卢海峰,易金龙,贺栋,等. 底泥基地质聚合物注浆材料制备试验研究[J]. 岩石力学与工程学报,2022,41(12):2567−2578.

    LU Haifeng,YI Jinlong,HE Dong,et al. Experimental study on preparation of geological polymer grouting material based on dredged sediment[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(12):2567−2578.
    [9]
    张文泉,朱先祥,李松,等. 橡胶-粉煤灰基矿井底板裂隙注浆材料性能的试验研究[J]. 煤炭科学技术,2023,51(5):1−10.

    ZHANG Wenquan,ZHU Xianxiang,LI Song,et al. Experimental study on performance of rubber-fly ash-based mine floor fissure grouting material[J]. Coal Science and Technology,2023,51(5):1−10.
    [10]
    JIANG N,ZHAO J H,SUN X Z,et al. Use of fly-ash slurry in backfill grouting in coal mines[J]. Heliyon,2017,3(11):e00470. doi: 10.1016/j.heliyon.2017.e00470
    [11]
    杨志强,高谦,王永前,等. 金川全尾砂–棒磨砂混合充填料胶砂强度与料浆流变特性研究[J]. 岩石力学与工程学报,2014,33(S2):3985−3991.

    YANG Zhiqiang,GAO Qian,WANG Yongqian,et al. Research on filling body strength and rheological properties of mixed filling mortar with unclassified tailings and rod milling sand in Jinchuan mine[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(S2):3985−3991.
    [12]
    赵兵朝,王京滨,张晴,等. 充填体-散体胶结组合体力学特性试验研究[J]. 煤炭科学技术,2023,51(7):298−309.

    ZHAO Bingchao,WANG Jingbin,ZHANG Qing,et al. Experimental study on mechanical properties of filling-bulk ce-menting combination body[J]. Coal Science and Technology,2023,51(7):298−309.
    [13]
    沙飞,李术才,刘人太,等. 富水砂层高效注浆材料试验与应用研究[J]. 岩石力学与工程学报,2019,38(7):1420−1433.

    SHA Fei,LI Shucai,LIU Rentai,et al. Performance and engineering application of effective microfine cement-based grout(EMCG) for water-rich sand strata[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(7):1420−1433.
    [14]
    杨宝贵,韩玉明,杨鹏飞,等. 煤矿高浓度胶结充填材料配比研究[J]. 煤炭科学技术,2014,42(1):30−33.

    YANG Baogui,HAN Yuming,YANG Pengfei,et al. Research on ratio of high concentration cementation stowing materials in coal mine[J]. Coal Science and Technology,2014,42(1):30−33.
    [15]
    李晓磊,杜献杰,冯国瑞,等. 水泥–粉煤灰基矸石胶结充填体破坏特征及强度形成机制[J]. 煤炭科学技术,2024,52(5):36−45. doi: 10.12438/cst.20230794

    LI Xiaolei,DU Xianjie,FENG Guorui,et al. Failure characteristics and strength formation mechanism of cement-fly ash based cemented gangue backfill[J]. Coal Science and Technology,2024,52(5):36−45. doi: 10.12438/cst.20230794
    [16]
    侯凯,王帅,姚顺,等. 矿用聚氨酯类注浆材料改性研究进展[J]. 煤炭科学技术,2022,50(10):28−34.

    HOU Kai,WANG Shuai,YAO Shun,et al. Research progress on modification of polyurethane grouting materials in mines[J]. Coal Science and Technology,2022,50(10):28−34.
    [17]
    汪涛,王志文,王三云,等. 煤矿高浓度胶结充填料浆管道输送特性研究[J]. 煤炭科学技术,2014,42(S1):50−52.

    WANG Tao WANG Zhi-wen WANG San-yun,et al. Study on Flowing Features of Mine High Density Cemented Filling Slurry in Pipeline[J]. Coal Science and Technology,2014,42(S1):50−52.
    [18]
    卢海峰,朱晨东,刘泉声. 不同注浆材料作用下结构面剪切力学特性研究[J]. 岩石力学与工程学报,2021,40(9):1803−1811.

    LU Haifeng,ZHU Chendong,LIU Quansheng. Study on shear mechanical properties of structural planes grouted with different materials[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(9):1803−1811.
    [19]
    张洪伟,万志军,张源. 非充分稳定覆岩下综放沿空掘巷窄煤柱巷旁注浆加固机理[J]. 采矿与安全工程学报,2018,35(3):489−495.

    ZHANG Hongwei,WAN Zhijun,ZHANG Yuan. Mechanism of grouted-reinforcement in last roadway for pillar in the fully-mechanized gob-side entry[J]. Journal of Mining & Safety Engineering,2018,35(3):489−495.
    [20]
    刘超,韩斌,孙伟,等. 高寒地区废石破碎胶结充填体强度特性试验研究与工业应用[J]. 岩石力学与工程学报,2015,34(1):139−147.

    LIU Chao,HAN Bin,SUN Wei,et al. Experimental study of strength of backfillings of cemented rock debris and its application under low temperature condition[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(1):139−147.
    [21]
    ZHAI M L,BAI H B,WU L Y,et al. A reinforcement method of floor grouting in high-water pressure working face of coal mines:a case study in Luxi coal mine,North China[J]. Environmental Earth Sciences,2022,81(1):28. doi: 10.1007/s12665-021-10144-4
    [22]
    LIU H T,CHEN Y,HAN Z J,et al. Coal wall spalling mechanism and grouting reinforcement technology of large mining height working face[J]. Sensors,2022,22(22):8675. doi: 10.3390/s22228675
    [23]
    WANG J Q,ZHANG J X,LI M,et al. A numerical simulation of the interaction of aggregate and rockfill in a gangue fluidized filling method[J]. Sustainability,2022,14(19):12838. doi: 10.3390/su141912838
    [24]
    张亮,许家林,轩大洋,等. 覆岩隔离注浆充填浆体压缩特性实验与应用[J]. 煤炭学报,2017,42(5):1117−1122.

    ZHANG Liang,XU Jialin,XUAN Dayang,et al. Experimental and applied research on compression properties of slurry used for isolated overburden grout injection[J]. Journal of China Coal Society,2017,42(5):1117−1122.
    [25]
    樊振丽. 离层充填开采注浆液运移通道与溶质扩散特征研究[J]. 煤炭科学技术,2017,45(7):172−179.

    FAN Zhenli. Grouting liquid migration pathway and solute diffusion characteristics of abscission layer mining with filling[J]. Coal Science and Technology,2017,45(7):172−179.
    [26]
    戚绪尧,王涛,陈良舟. 煤岩裂隙高位注浆浆液扩散规律[J]. 煤炭学报,2022,47(3):1098−1109.

    QI Xuyao,WANG Tao,CHEN Liangzhou. Diffusion law of high-position grouting in coal and rock fracture[J]. Journal of China Coal Society,2022,47(3):1098−1109.
    [27]
    赵文,邵红旗. 深部采空区注浆效果即时检测方法[J]. 煤炭学报,2021,46(S2):621−628.

    ZHAO Wen,SHAO Hongqi. Real-time detection method of grouting effect in deep goaf[J]. Journal of China Coal Society,2021,46(S2):621−628.
    [28]
    李建,郑恺丹,轩大洋,等. 覆岩隔离注浆充填浆液无压阶段扩散规律实验研究[J]. 煤炭学报,2020,45(S1):78−86.

    LI Jian,ZHENG Kaidan,XUAN Dayang,et al. Experimental study on slurry diffusion law during the non-pressure stage in overburden isolated grouting[J]. Journal of China Coal Society,2020,45(S1):78−86.
    [29]
    LI L,HUANG Q X,ZUO X,et al. Study on the slurry diffusion law of fluidized filling gangue in the caving goaf of thick coal seam fully mechanized caving mining[J]. Energies,2022,15(21):8164. doi: 10.3390/en15218164
    [30]
    ZHAI M L,MA D,BAI H B. Diffusion mechanism of slurry during grouting in a fractured aquifer:a case study in chensilou coal mine,China[J]. Mathematics,2022,10(8):1345. doi: 10.3390/math10081345
    [31]
    JIANG D H,CHENG X Z,LUAN H J,et al. Experimental investigation on the law of grout diffusion in fractured porous rock mass and its application[J]. Processes,2018,6(10):191. doi: 10.3390/pr6100191
    [32]
    XUAN D Y,XU J L,WANG B L,et al. Borehole investigation of the effectiveness of grout injection technology on coal mine subsidence control[J]. Rock Mechanics and Rock Engineering,2015,48(6):2435−2445. doi: 10.1007/s00603-015-0710-5
    [33]
    武竹. 神州煤业4604工作面浓浆充填沉陷控制技术研究[J]. 山西煤炭,2023,43(2):48−56. doi: 10.3969/j.issn.1672-5050.2023.02.009

    WU Zhu. Subsidence control technology of thick slurry filling in No. 4604 working face of Shenzhou coal industry[J]. Shanxi Coal,2023,43(2):48−56. doi: 10.3969/j.issn.1672-5050.2023.02.009

Catalog

    Article views (36) PDF downloads (18) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return