Citation: | JIANG Bingyou,ZHANG Yuqian,YU Changfei,et al. Prediction of coal dust particle size after spraying dust reduction in roadway based on orthogonal experiment and regression analysis[J]. Coal Science and Technology,2024,52(12):143−153. DOI: 10.12438/cst.2024-0532 |
In order to investigate the main factors affecting the effect of spray dust reduction on the particle size of coal dust after spray dust reduction, a quantitative mathematical model was obtained to characterize the quantitative relationship between the influencing factors and the particle size parameters of coal dust after spray dust reduction. Based on the comprehensive experimental platform for spray dust removal, orthogonal experiments and regression analysis methods were applied to study the change rule of coal dust characteristic particle size D90 after spray dust reduction under the effect of three factors, namely, spray frame distance from dust source, tunnel wind speed and nozzle water supply pressure, and correlation analysis was carried out on 25 groups of experimental results. The weight value of each influencing factor in the coal dust D90 after spray dust reduction was determined by the mean square variance decision making method. On this basis, combined with the weights of each influencing factor, a weighted-based multivariate nonlinear regression prediction model of coal dust D90 after spraying dust reduction was constructed, and its prediction results were compared and analyzed with those of the multivariate linear regression model. The results show that: the coal dust D90 after spray dust reduction decreases with the increase of the distance from the dust source to the spray frame, increases and then decreases with the increase of wind speed, and increases with the increase of water supply pressure, and there is a strong positive correlation between full dust, exhaled dust reduction efficiency and D90, the better the spray dust reduction effect, the larger the coal dust D90 after spray dust reduction; the weighting-based prediction model of coal dust D90 after dust spraying has higher accuracy and smaller error, and can accurately characterize the quantitative relationship between coal dust D90 after dust spraying and three influencing factors, namely, the distance of the spray frame from the dust source, the wind speed of the roadway, and the water supply pressure of the nozzle.
[1] |
程卫民,周刚,陈连军,等. 我国煤矿粉尘防治理论与技术20年研究进展及展望[J]. 煤炭科学技术,2020,48(2):1−20.
CHENG Weimin,ZHOU Gang,CHEN Lianjun,et al. Research progress and prospect of dust control theory and technology in China’s coal mines in the past 20 years[J]. Coal Science and Technology,2020,48(2):1−20.
|
[2] |
翁安琦,袁树杰,王晓楠,等. 煤层注水降尘中表面活性剂复配应用研究[J]. 中国安全科学学报,2020,30(10):90−95.
WENG Anqi,YUAN Shujie,WANG Xiaonan,et al. Study on application of surfactant compound in coal seam water injection for dust reduction[J]. China Safety Science Journal,2020,30(10):90−95.
|
[3] |
秦波涛,周刚,周群,等. 煤矿综采工作面活性磁化水喷雾降尘技术体系与应用[J]. 煤炭学报,2021,46(12):3891−3901.
QIN Botao,ZHOU Gang,ZHOU Qun,et al. Dust removal system and application of the surfactant-magnetized water spray in the fully mechanized mining face of coal mines[J]. Journal of China Coal Society,2021,46(12):3891−3901.
|
[4] |
聂文,许长炜,彭慧天,等. 矿井新型增润促凝喷雾降尘剂的研制与抑尘性能研究[J]. 材料导报,2023,37(15):264−272.
NIE Wen,XU Changwei,PENG Huitian,et al. Development and research on dust suppression performance of a new type of spray dust suppressant for increasing moisturizing and accelerating coagulation in mines[J]. Materials Reports,2023,37(15):264−272.
|
[5] |
江丙友,张琦,朱志辉,等. 湿式除尘器中气水喷雾降尘效果试验研究[J]. 金属矿山,2023(7):82−90.
JIANG Bingyou,ZHANG Qi,ZHU Zhihui,et al. Experimental study on dust reduction effect of air-water spray in wet dust collector[J]. Metal Mine,2023(7):82−90.
|
[6] |
林汉毅,江丙友,袁亮,等. 煤矿掘进工作面粉尘延时采样测量方法[J]. 中国安全科学学报,2023,33(10):199−206.
LIN Hanyi,JIANG Bingyou,YUAN Liang,et al. Measurement method of dust time-delay sampling in coal mine heading face[J]. China Safety Science Journal,2023,33(10):199−206.
|
[7] |
金龙哲,刘建国,林清侠,等. 矿山喷雾降尘技术研究与应用现状综述[J]. 金属矿山,2023(7):2−17.
JIN Longzhe,LIU Jianguo,LIN Qingxia,et al. Review on the research and application of water spray dust-reduction technology in mines[J]. Metal Mine,2023(7):2−17.
|
[8] |
王健,刘荣华,王鹏飞,等. 常用压力式喷嘴雾化特性及降尘性能研究[J]. 煤矿安全,2019,50(8):36−40.
WANG Jian,LIU Ronghua,WANG Pengfei,et al. Study on atomization characteristics and dust reduction performance of common pressure nozzles[J]. Safety in Coal Mines,2019,50(8):36−40.
|
[9] |
程卫民,聂文,周刚,等. 煤矿高压喷雾雾化粒度的降尘性能研究[J]. 中国矿业大学学报,2011,40(2):185−189,206.
CHENG Weimin,NIE Wen,ZHOU Gang,et al. Study of dust suppression by atomized water from high-pressure sprays in mines[J]. Journal of China University of Mining & Technology,2011,40(2):185−189,206.
|
[10] |
范少峰. 综采工作面采煤机高压喷雾降尘技术研究[J]. 机械管理开发,2022,37(9):222−224.
FAN Shaofeng. Research on high pressure spray dust reduction technology for coal mining machine at header working face[J]. Mechanical Management and Development,2022,37(9):222−224.
|
[11] |
FANG X M,YUAN L,JIANG B Y,et al. Effect of water–fog particle size on dust fall efficiency of mechanized excavation face in coal mines[J]. Journal of Cleaner Production,2020,254:120146. doi: 10.1016/j.jclepro.2020.120146
|
[12] |
聂文,彭慧天,刘阳昊,等. 风流影响雾滴与尘粒耦合沉降的实验研究[J]. 山东科技大学学报(自然科学版),2016,35(6):30−36. doi: 10.3969/j.issn.1672-3767.2016.06.005
NIE Wen,PENG Huitian,LIU Yanghao,et al. Experimental research on the coupling and settlement of droplets and dust particles influenced by airflow[J]. Journal of Shandong University of Science and Technology (Natural Science),2016,35(6):30−36. doi: 10.3969/j.issn.1672-3767.2016.06.005
|
[13] |
WANG P F,HAN H,TIAN C,et al. Experimental study on dust reduction via spraying using surfactant solution[J]. Atmospheric Pollution Research,2020,11(6):32−42. doi: 10.1016/j.apr.2020.02.010
|
[14] |
邱晗,朱良,范韬. 顺风流扰动下喷雾场粒度-速度分布规律实验[J]. 煤矿安全,2016,47(9):20−23.
QIU Han,ZHU Liang,FAN Tao. Experiment on distribution of particle size and velocity in spray field under disturbance of airflow[J]. Safety in Coal Mines,2016,47(9):20−23.
|
[15] |
王焕强,李涛. 尘肺病的定义与历史[J]. 中国职业医学,2017,44(4):485−493.
WANG Huanqiang,LI Tao. Definition and history of pneumoconiosis[J]. China Occupational Medicine,2017,44(4):485−493.
|
[16] |
毛翎,彭莉君,王焕强,等. 尘肺病治疗中国专家共识(2024年版)[J]. 环境与职业医学,2024,41(1):1−21. doi: 10.11836/JEOM23379
MAO Ling,PENG Lijun,WANG Huanqiang,et al. et al. Consensus of Chinese experts on pneumoconiosis treatment(2024)[J]. Journal of Environmental and Occupational Medicine,2024,41(1):1−21. doi: 10.11836/JEOM23379
|
[17] |
王鹏飞,谭烜昊,刘荣华,等. 供水压力对气水喷雾雾化特性及降尘效果的影响[J]. 应用基础与工程科学学报,2018,26(6):1348−1359.
WANG Pengfei,TAN Xuanhao,LIU Ronghua,et al. Influence of water supply pressure on the atomization characteristics and dust-settling efficiency of air-water spray[J]. Journal of Basic Science and Engineering,2018,26(6):1348−1359.
|
[18] |
HAN H,WANG P F,LI Y J,et al. Effect of water supply pressure on atomization characteristics and dust-reduction efficiency of internal mixing air atomizing nozzle[J]. Advanced Powder Technology,2020,31(1):252−268. doi: 10.1016/j.apt.2019.10.017
|
[19] |
张兵兵,刘磊,孙健. 探究喷雾除尘方式及粉尘粒径分布规律的数值模拟研究[J]. 煤矿现代化,2021,30(2):107−111. doi: 10.3969/j.issn.1009-0797.2021.02.036
ZHANG Bingbing,LIU Lei,SUN Jian. Numerical simulation study on spray dedusting method and dust particle size distribution rule[J]. Coal Mine Modernization,2021,30(2):107−111. doi: 10.3969/j.issn.1009-0797.2021.02.036
|
[20] |
周刚,聂文,程卫民,等. 煤矿综放工作面高压雾化降尘对粉尘颗粒微观参数影响规律分析[J]. 煤炭学报,2014,39(10):2053−2059.
ZHOU Gang,NIE Wen,CHENG Weimin,et al. Influence regulations analysis of high-pressure atomization dust-settling to dust particle’s microscopic parameters in fully mechanized caving coal face[J]. Journal of China Coal Society,2014,39(10):2053−2059.
|
[21] |
唐明云,王乐乐,周亮,等. 连采机截割尘源高压雾化封闭控降尘系统研究与应用[J]. 金属矿山,2023(7):74−81.
TANG Mingyun,WANG Lele,ZHOU Liang,et al. Research and application of high-pressure atomization closed dust control and reducing system for cutting dust source of continuous mining machine[J]. Metal Mine,2023(7):74−81.
|
[22] |
聂文,程卫民,周刚,等. 掘进面喷雾雾化粒度受风流扰动影响实验研究[J]. 中国矿业大学学报,2012,41(3):378−383.
NIE Wen,CHENG Weimin,ZHOU Gang,et al. Experimental study on atomized particle size as affected by airflow disturbance at the heading face[J]. Journal of China University of Mining & Technology,2012,41(3):378−383.
|
[23] |
中华人民共和国应急管理部,国家矿山安全监察局. 煤矿安全规程 2022 [M]. 北京:应急管理出版社, 2022.
|
[24] |
聂文,刘阳昊,马骁,等. 风流扰动支架架间高压喷雾降尘雾滴粒度实验[J]. 中国矿业大学学报,2016,45(4):670−676.
NIE Wen,LIU Yanghao,MA Xiao,et al. Experiment on the size of airflow disturbing dust removal droplet produced by high-pressure spray between supports[J]. Journal of China University of Mining & Technology,2016,45(4):670−676.
|
[25] |
王鹏飞,邬高高,田畅,等. 基于正交试验的内混式空气雾化喷嘴结构参数优化[J]. 煤炭科学技术,2023,51(9):129−139.
WANG Pengfei,WU Gaogao,TIAN Chang,et al. Structural parameters optimization of internal mixing air atomizing nozzle based on orthogonal experiment[J]. Coal Science and Technology,2023,51(9):129−139.
|
[26] |
蒋仲安,王亚朋,许峰. 金属矿山气-水喷头雾化特性及降尘能力实验研究[J]. 中南大学学报(自然科学版),2020,51(1):184−192. doi: 10.11817/j.issn.1672-7207.2020.01.021
JIANG Zhongan,WANG Yapeng,XU Feng. Experimental study on atomization characteristics and dust reduction capacity of gas-water nozzles in metal mines[J]. Journal of Central South University (Science and Technology),2020,51(1):184−192. doi: 10.11817/j.issn.1672-7207.2020.01.021
|
[27] |
王鹏飞,刘荣华,汤梦,等. 煤矿井下高压喷雾雾化特性及其降尘效果实验研究[J]. 煤炭学报,2015,40(9):2124−2130.
WANG Pengfei,LIU Ronghua,TANG Meng,et al. Experimental study on atomization characteristics and dust suppression efficiency of high-pressure spray in underground coal mine[J]. Journal of China Coal Society,2015,40(9):2124−2130.
|
[28] |
于群,霍筱东,何剑,等. 基于斯皮尔曼相关系数和系统惯量的中国电网停电事故趋势预测[J]. 中国电机工程学报,2023,43(14):5372−5381.
YU Qun,HUO Xiaodong,HE Jian,et al. Trend prediction of power blackout accidents in Chinese power grid based on Spearman’s correlation coefficient and system inertia[J]. Proceedings of the CSEE,2023,43(14):5372−5381.
|
[29] |
汤凤香,方秀男. 基于均方差权重的秩和比方法在成绩评价中的应用[J]. 经济师,2018(8):229−230,232. doi: 10.3969/j.issn.1004-4914.2018.08.121
|
[30] |
伍建军,刘拓,朱迅. 基于正交试验的柔性微夹持器参数权重分析[J]. 机床与液压,2020,48(15):7−11. doi: 10.3969/j.issn.1001-3881.2020.15.002
WU Jianjun,LIU Tuo,ZHU Xun. Parameter weight analysis of flexible microgripper based on orthogonal test[J]. Machine Tool & Hydraulics,2020,48(15):7−11. doi: 10.3969/j.issn.1001-3881.2020.15.002
|
[31] |
王蕊,董祥旻,何卫苹. 一种多元非线性回归模型的建立方法及其应用[J]. 中国考试,2010(11):17−22.
WANG Rui,DONG Xiangmin,HE Weiping. A kind of multiple nonlinear regression model and its application[J]. China Examinations,2010(11):17−22.
|
[32] |
郝天轩,柳猛. 基于多元非线性回归理论的煤层瓦斯含量预测[J]. 煤炭技术,2014,33(9):1−3.
HAO Tianxuan,LIU Meng. Prediction of coal seam gas content based on multivariate nonlinear regression[J]. Coal Technology,2014,33(9):1−3.
|
[33] |
WANG P F,TIAN C,LIU R H,et al. Mathematical model for multivariate nonlinear prediction of SMD of X-type swirl pressure nozzles[J]. Process Safety and Environmental Protection,2019,125:228−237. doi: 10.1016/j.psep.2019.03.023
|
[34] |
李博,吴煌,李腾. 基于加权的综采导水裂隙带高度多元非线性回归预测方法研究[J]. 采矿与安全工程学报,2022,39(3):536−545.
LI Bo,WU Huang,LI Teng. Height prediction of water-conducting fractured zone under fully mechanized mining based on weighted multivariate nonlinear regression[J]. Journal of Mining & Safety Engineering,2022,39(3):536−545.
|
1. |
林汉毅,袁亮,江丙友,章玉前,王一凡,王浩宇. 呼吸性煤尘表面异质核化凝结效果预测及降尘试验. 煤炭学报. 2025(03): 1609-1621 .
![]() |