Advance Search
XIE Beijing,LUAN Zheng,LI Heng,et al. Dynamic characteristics of combined coal rock based on RSM–BBD[J]. Coal Science and Technology,2025,53(2):109−123. DOI: 10.12438/cst.2024-0499
Citation: XIE Beijing,LUAN Zheng,LI Heng,et al. Dynamic characteristics of combined coal rock based on RSM–BBD[J]. Coal Science and Technology,2025,53(2):109−123. DOI: 10.12438/cst.2024-0499

Dynamic characteristics of combined coal rock based on RSM–BBD

More Information
  • Received Date: April 17, 2024
  • Available Online: February 20, 2025
  • The inherent instability of deep coal rock masses and coal-rock composite bearing structures significantly contributes to coal rock dynamic disasters in mines. An experimental investigation into the dynamic response behavior of composite coal-rock was carried out by conducting impact loading experiments using a separated Hopkinson pressure bar system with a 50 mm diameter. The study analyzed the effects of factors like strain rate (A: 50–350 s−1), lateral confining pressure (B: 4–16 MPa), and compression ratio (C: 1–4). Subsequently, a response surface experimental design with three factors and levels was developed using Design Expert12 software to analyze the impacts of individual factors and factor interactions on dynamic compressive strength σ and energy consumption rate k. Finally, a superposition damage constitutive model was formulated based on principles such as superposition theory and Weibull distribution. The results indicate that the mechanical properties of coal rock are notably affected by both individual factors and the interaction between factors. Specifically, the influence of single factors on σ and k follows the order A>C>B, while the impact of factor interactions on σ is ranked as AC>AB>BC, and on k as AB>AC>BC. The coal components within composite coal rock primarily undergo shear failure, leading to the development of macroscopic cracks in regions with lower ratios of rock components. Furthermore, the strength distribution of ternary composite coal rock demonstrates regional characteristics. The strength hierarchy of composite coal rock, from lowest to highest, follows this sequence: coal component non-interface area, coal component interface area, low component rock interface area, low component rock non-interface area, high component rock interface area, and high component rock non-interface area. The developed damage constitutive model effectively portrays the dynamic response relationship of composite coal rock, demonstrating a fitting coefficient of at least 0.97 between the theoretical and experimental curves. These research findings offer valuable insights for investigating the phenomenon of dynamic and static load superposition in the mining face during operations and for disaster prevention and control.

  • [1]
    解北京,栾铮,陈冬新,等. 不同长径比煤样动力学特征及本构模型[J]. 矿业科学学报,2023,8(2):190−201.

    XIE Beijing,LUAN Zheng,CHEN Dongxin,et al. Dynamic characteristics and constitutive model of coal samples with different length diameter ratio[J]. Journal of Mining Science and Technology,2023,8(2):190−201.
    [2]
    夏开文,王帅,徐颖,等. 深部岩石动力学试验研究进展[J]. 岩石力学与工程学报,2021,40(3):448−475.

    XIA Kaiwen,WANG Shuai,XU Ying,et al. Advances in experimental studies for deep rock dynamics[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(3):448−475.
    [3]
    宫凤强,李夕兵,刘希灵. 一维动静组合加载下砂岩动力学特性的试验研究[J]. 岩石力学与工程学报,2010,29(10):2076−2085.

    GONG Fengqiang,LI Xibing,LIU Xiling. Experimental study of dynamic characteristics of sandstone under one-dimensional coupled static and dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(10):2076−2085.
    [4]
    余伟健,潘豹,李可,等. 岩-煤-岩组合体力学特性及裂隙演化规律[J]. 煤炭学报,2022,47(3):1155−1167.

    YU Weijian,PAN Bao,LI Ke,et al. Mechanical properties and fracture evolution law of rock-coal-rock combination[J]. Journal of China Coal Society,2022,47(3):1155−1167.
    [5]
    王文,李化敏,顾合龙. 三维动静组合加载含水煤样强度特征试验研究[J]. 岩石力学与工程学报,2017,36(10):2406−2414.

    WANG Wen,LI Huamin,GU Helong. Experimental study of strength characteristics of water-saturated coal specimens under 3D coupled static-dynamic loadings[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(10):2406−2414.
    [6]
    吴拥政,孙卓越,付玉凯. 三维动静加载下不同长径比煤样力学特性及能量耗散规律[J]. 岩石力学与工程学报,2022,41(5):877−888.

    WU Yongzheng,SUN Zhuoyue,FU Yukai. Mechanical properties and energy dissipation laws of coal samples with different length-to-diameter ratios under 3D coupled static and dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(5):877−888.
    [7]
    刘少虹,秦子晗,娄金福. 一维动静加载下组合煤岩动态破坏特性的试验分析[J]. 岩石力学与工程学报,2014,33(10):2064−2075.

    LIU Shaohong,QIN Zihan,LOU Jinfu. Experimental study of dynamic failure characteristics of coal-rock compound under one-dimensional static and dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(10):2064−2075.
    [8]
    李成杰,徐颖,张宇婷,等. 冲击荷载下裂隙类煤岩组合体能量演化与分形特征研究[J]. 岩石力学与工程学报,2019,38(11):2231−2241.

    LI Chengjie,XU Ying,ZHANG Yuting,et al. Study on energy evolution and fractal characteristics of cracked coal-rock-like combined body under impact loading[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(11):2231−2241.
    [9]
    杨科,刘文杰,马衍坤,等. 煤岩组合体冲击动力学特征试验研究[J]. 煤炭学报,2022,47(7):2569−2581.

    YANG Ke,LIU Wenjie,MA Yankun,et al. Experimental research on dynamic characteristics of coal-rock combined specimen[J]. Journal of China Coal Society,2022,47(7):2569−2581.
    [10]
    刘少虹,毛德兵,齐庆新,等. 动静加载下组合煤岩的应力波传播机制与能量耗散[J]. 煤炭学报,2014,39(S1):15−22.

    LIU Shaohong,MAO Debing,QI Qingxin,et al. Stress wave propagation mechanism and energy dissipation of combined coal and rock under static and dynamic loading[J]. Journal of China Coal Society,2014,39(S1):15−22.
    [11]
    温森,黄睿智,孔庆梅,等. 强度比对类复合岩样冲击破碎特征的影响[J]. 科学技术与工程,2024,24(6):2495−2502.

    WEN Sen,HUANG Ruizhi,KONG Qingmei,et al. Influence of strength ratio on impact fracture characteristics of composite rock-like samples[J]. Science Technology and Engineering,2024,24(6):2495−2502.
    [12]
    周喻,邹世卓,高永涛,等. 动载下层状岩体力学特性试验与数值模拟[J]. 哈尔滨工业大学学报,2023,55(6):93−109.

    ZHOU Yu,ZOU Shizhuo,GAO Yongtao,et al. Test and numerical simulation for mechanical properties of laminated rock mass under dynamic loading[J]. Journal of Harbin Institute of Technology,2023,55(6):93−109.
    [13]
    杨科,刘文杰,窦礼同,等. 煤岩组合体界面效应与渐进失稳特征试验[J]. 煤炭学报,2020,45(5):1691−1700.

    YANG Ke,LIU Wenjie,DOU Litong,et al. Experimental investigation into interface effect and progressive instability of coal-rock combined specimen[J]. Journal of China Coal Society,2020,45(5):1691−1700.
    [14]
    朱传杰,马聪,周靖轩,等. 动静载荷耦合作用下复合煤岩体的力学特性及破坏特征[J]. 煤炭学报,2021,46(S2):817−829.

    ZHU Chuanjie,MA Cong,ZHOU Jingxuan,et al. Mechanical characteristics and failure characteristics of composite coal and rock mass under dynamic and static load coupling[J]. Journal of China Coal Society,2021,46(S2):817−829.
    [15]
    朱兆祥,徐大本,王礼立. 环氧树脂在高应变率下的热粘弹性本构方程和时温等效性[J]. 宁波大学学报(理工版),1988,1(1):58−68.

    ZHU Zhaoxiang,XU Daben,WANG Lili. Thermoviscoelastic constitutive equation and time-temperature equivalence of epoxy resin at high strain rates[J]. Journal of Ningbo University (Natural Science & Engineering Edition),1988,1(1):58−68.
    [16]
    单仁亮,程瑞强,高文蛟. 云驾岭煤矿无烟煤的动态本构模型研究[J]. 岩石力学与工程学报,2006,25(11):2258−2263.

    SHAN Renliang,CHENG Ruiqiang,GAO Wenjiao. Study on dynamic constitutive model of anthracite of yunjialing coal mine[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(11):2258−2263.
    [17]
    翟新献,翟俨伟,刘勤裕,等. 冲击作用下含水煤样能量吸收和耗散规律及本构关系研究[J]. 振动与冲击,2023,42(6):202−211.

    ZHAI Xinxian,ZHAI Yanwei,LIU Qinyu,et al. Energy absorption and dissipation and the constitutive relation of water-bearing coal specimens under impact load[J]. Journal of Vibration and Shock,2023,42(6):202−211.
    [18]
    解北京,严正. 基于层叠模型组合煤岩体动态力学本构模型[J]. 煤炭学报,2019,44(2):463−472.

    XIE Beijing,YAN Zheng. Dynamic mechanical constitutive model of combined coal-rock mass based on overlay model[J]. Journal of China Coal Society,2019,44(2):463−472.
    [19]
    曹文贵,李翔. 岩石损伤软化统计本构模型及参数确定方法的新探讨[J]. 岩土力学,2008,29(11):2952−2956.

    CAO Wengui,LI Xiang. A new discussion on damage softening statistical constitutive model for rocks and method for determining its parameters[J]. Rock and Soil Mechanics,2008,29(11):2952−2956.
    [20]
    王登科,刘淑敏,魏建平,等. 冲击破坏条件下煤的强度型统计损伤本构模型与分析[J]. 煤炭学报,2016,41(12):3024−3031.

    WANG Dengke,LIU Shumin,WEI Jianping,et al. Analysis and strength statistical damage constitutive model of coal under impacting failure[J]. Journal of China Coal Society,2016,41(12):3024−3031.
    [21]
    王恩元,孔祥国,何学秋,等. 冲击载荷下三轴煤体动力学分析及损伤本构方程[J]. 煤炭学报,2019,44(7):2049−2056.

    WANG Enyuan,KONG Xiangguo,HE Xueqiu,et al. Dynamics analysis and damage constitute equation of triaxial coal mass under impact load[J]. Journal of China Coal Society,2019,44(7):2049−2056.
    [22]
    赵洪宝,吉东亮,刘绍强,等. 冲击荷载下复合岩体动力响应力学特性及本构模型研究[J]. 岩石力学与工程学报,2023,42(1):88−99.

    ZHAO Hongbao,JI Dongliang,LIU Shaoqiang,et al. Study on dynamic response and constitutive model of composite rock under impact loading[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(1):88−99.
    [23]
    张超,王星龙,李树刚,等. 基于响应面法治理煤矿硫化氢的改性碱液配比优化[J]. 煤炭学报,2020,45(8):2926−2932.

    ZHANG Chao,WANG Xinglong,LI Shugang,et al. Optimization of the ratio of modified alkaline solution for hydrogen sulfide treatment in coal mine based on response surface method[J]. Journal of China Coal Society,2020,45(8):2926−2932.
    [24]
    范厚彬,樊志华,陆耀忠. 基于层叠模型的岩土材料流变本构关系识别[J]. 岩石力学与工程学报,2005,24(5):768−773.

    FAN Houbin,FAN Zhihua,LU Yaozhong. Identification of rheological constitutive relation of engineering material based on overlayer model[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(5):768−773.
    [25]
    林长宇,王启睿,杨立云,等. 玄武岩纤维活性粉末混凝土在冲击载荷下的力学行为及本构关系[J]. 材料导报,2022,36(19):99−105.

    LIN Changyu,WANG Qirui,YANG Liyun,et al. Mechanical behavior and constitutive relationship of basalt fiber reactive powder concrete under impact loading[J]. Materials Reports,2022,36(19):99−105.
    [26]
    李斌,朱志武,李涛. 冻融循环冻土的冲击动态力学性能[J]. 爆炸与冲击,2022,42(9):164−178.

    LI Bin,ZHU Zhiwu,LI Tao. Impact dynamic mechanical properties of frozen soil with freeze-thaw cycles[J]. Explosion and Shock Waves,2022,42(9):164−178.
    [27]
    中国岩石力学与工程学会. T/ CSRME 001-2019 岩石动力特性试验规程[S]. 北京:中国标准出版社,2019.
    [28]
    赵毅鑫,周金龙,刘文岗. 新街矿区深部开采邻空巷道受载特征及冲击失稳规律分析[J]. 煤炭学报,2020,45(5):1595−1606.

    ZHAO Yixin,ZHOU Jinlong,LIU Wengang. Characteristics of ground pressure and mechanism of coal burst in the gob side roadway at Xinjie deep mining area[J]. Journal of China Coal Society,2020,45(5):1595−1606.
    [29]
    陈为农,宋博. 分离式霍普金森(考尔斯基)杆:设计、试验和应用[M]. 姜锡权,卢玉斌,译. 北京:国防工业出版社,2018.
    [30]
    HAN Z Y,LI D Y,LI X B. Dynamic mechanical properties and wave propagation of composite rock-mortar specimens based on SHPB tests[J]. International Journal of Mining Science and Technology,2022,32(4):793−806. doi: 10.1016/j.ijmst.2022.05.008
    [31]
    解北京,栾铮,李晓旭,等. 三维动静加载下煤的本构模型及卸荷破坏特征[J]. 哈尔滨工业大学学报,2024,56(4):61−72.

    XIE Beijing,LUAN Zheng,LI Xiaoxu,et al. Constitutive model and unloading failure characteristics of coal under 3D coupled static and dynamic loads[J]. Journal of Harbin Institute of Technology,2024,56(4):61−72.
    [32]
    李胜,王箫鹤,范超军,等. 冲击载荷作用下煤岩孔隙演化特征试验研究[J]. 中国安全科学学报,2019,29(10):91−97.

    LI Sheng,WANG Xiaohe,FAN Chaojun,et al. Experimental study on evolution characteristics of coal pores under impact loadings[J]. China Safety Science Journal,2019,29(10):91−97.
    [33]
    解北京,栾铮,刘天乐,等. 静水压下原生组合煤岩动力学破坏特征[J]. 煤炭学报,2023,48(5):2153−2167.

    XIE Beijing,LUAN Zheng,LIU Tianle,et al. Dynamic failure characteristics of primary coal-rock combination under hydrostatic pressure[J]. Journal of China Coal Society,2023,48(5):2153−2167.
    [34]
    姜延航,白刚,周西华,等. 煤层注CO2驱替CH4影响因素试验研究[J]. 中国安全科学学报,2022,32(4):113−121.

    JIANG Yanhang,BAI Gang,ZHOU Xihua,et al. Experimental study on influence factors of CH4 displacement by CO2[J]. China Safety Science Journal,2022,32(4):113−121.
    [35]
    周西华,曾晓坤,白刚,等. 基于响应曲面法的遗煤自燃分析与研究[J]. 中国安全生产科学技术,2020,16(10):34−39.

    ZHOU Xihua,ZENG Xiaokun,BAI Gang,et al. Analysis and research on spontaneous combustion of residual coal based on response surface method[J]. Journal of Safety Science and Technology,2020,16(10):34−39.
    [36]
    王磊,邹鹏,焦振华,等. 冲击载荷下两种应变率作用方式煤岩能量演化及分形特征研究[J]. 振动与冲击,2022,41(14):280−289.

    WANG Lei,ZOU Peng,JIAO Zhenhua,et al. Energy evolution and fracture characteristics of coal and rock under impact load with two kinds of strain rate action modes[J]. Journal of Vibration and Shock,2022,41(14):280−289.
    [37]
    LIU X S,TAN Y L,NING J G,et al. Mechanical properties and damage constitutive model of coal in coal-rock combined body[J]. International Journal of Rock Mechanics and Mining Sciences,2018,110:140−150. doi: 10.1016/j.ijrmms.2018.07.020
    [38]
    李鸿儒,王志亮,郝士云. 主动围压下花岗岩动态力学特性与本构模型研究[J]. 水文地质工程地质,2018,45(3):49−55.

    LI Hongru,WANG Zhiliang,HAO Shiyun. A study of the dynamic properties and constitutive model of granite under active confining pressures[J]. Hydrogeology & Engineering Geology,2018,45(3):49−55.

Catalog

    Article views (60) PDF downloads (24) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return