Advance Search
LIAO Changjian,WANG Jing,JIN Ping,et al. Review of physical and chemical characteristics and heavy metal migration rules of coal gasification slag[J]. Coal Science and Technology,2025,53(2):426−443. DOI: 10.12438/cst.2024-0475
Citation: LIAO Changjian,WANG Jing,JIN Ping,et al. Review of physical and chemical characteristics and heavy metal migration rules of coal gasification slag[J]. Coal Science and Technology,2025,53(2):426−443. DOI: 10.12438/cst.2024-0475

Review of physical and chemical characteristics and heavy metal migration rules of coal gasification slag

More Information
  • Received Date: April 14, 2024
  • Available Online: February 11, 2025
  • The resource utilization of coal gasification slag has become a research focus in the field of coal-based solid waste. The physical and chemical characteristics and the heavy metal migration rules of coal gasification slag are very important for its resource utilization. Firstly, three coal gasification technologies of entrained flow, fluidized-bed and fixed-bed gasification were introduced and compared. Then, the physical and chemical characteristic of coal gasification slag, including particle size composition, apparent and microscopic morphology, inorganic and crystalline mineral composition and carbon residue content, were summarized. Finally, the migration behavior, risk assessment code and leaching behavior of heavy metals in coal gasification slag were analyzed. The physical and chemical characteristics of coarse slag and fine slag are different to some extent. From the perspective of physical and chemical characteristics, the differences of fine slag and coarse slag are as follows. The particle size of fine slag is much lower than that of coarse slag, about 60% of fine slag is less than 0.250 mm, and about 50% of coarse slag is more than 0.500 mm. The specific surface area of fine slag is larger than that of coarse slag, and the average pore diameter is smaller than that of coarse slag. The inorganic components of coarse slag and fine slag are mainly SiO2, Al2O3, CaO and Fe2O3, in which the acid oxides account for about 35%−80% of the total components, the basic oxides account for about 20%−65% of the total components, and the coarse slag has more basic oxides, and the fine slag has more acidic oxides. The crystalline minerals and amorphous substances in coarse slag and fine slag are not simple coal gasification residues, but formed after a series of complex physical and chemical reactions in the gasification process. Both of the main crystalline minerals of coarse slag and fine slag are quartz, calcite and mullite, but the types and contents of other crystalline minerals are very different, which is mainly affected by factors such as coal type and gasification temperature. The carbon residue content of coarse slag is mostly 3%−20%, while that of fine slag is mostly 20%−40%. The carbon residue content of coarse slag is lower than that of fine slag, but the reactivity of coarse slag is higher than that of fine slag. The distribution of carbon residue content in coarse slag or fine slag with different particle sizes is uneven. The medium coarse slag with about 0.250 mm has a higher carbon residue content, while the highest carbon residue content in fine slag corresponds to the particle size of about 0.125−0.250 mm or large particle size, and the carbon residue content in fine slag increases with the increase of particle size. The residual carbon in the gasification slag has a porous structure with more large pores and good connectivity. The residual carbon in the gasification coarse slag is mostly amorphous, while the residual carbon in the gasification fine slag has obvious aromatic structure and more aromatic C—C or C—H bonds. In terms of heavy metal migration, there are different degrees of heavy metal enrichment in coarse slag and fine slag, and the enrichment factors are closely related to the volatility of heavy metal elements. Compared with coarse slag, fine slag has greater environmental risk, and heavy metals such As Cd, Ni, Cu, Zn, AS, Co, Mo, Se, Pb and Cr in gasification slag have higher environmental risk, which should be paid more attention to. The leaching behavior of heavy metals in gasification slag is dependent on leaching scheme, leaching time and particle size of gasification slag. Under strong acid or/and strong alkali conditions, most heavy metals will have higher leaching concentration, and the leaching concentration of heavy metals increases with the increase of time until it becomes stable. Meanwhile, the leaching concentration of heavy metals in small-size gasification slag is usually higher than that in large-size gasification slag.

  • [1]
    现代煤化工. 谢克昌:立足国情,走好具有中国特色的煤炭清洁高效利用之路[EB/OL]. (2022−06−02)[2024−03−15]. http://www.ccoalnews.com/news/202209/22/c161542. html.
    [2]
    中国石化集团经济技术研究院有限公司. 中国能源展望2060[M]. 北京:中国石化出版社,2022.
    [3]
    新华社. 《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》[EB/OL]. (2021−03−12)[2024−03−15]. https://www.gov.cn/xinwen/2021-03/13/ content_5592681.htm.
    [4]
    IEA. Coal 2023 Analysis and forecast to 2026[R/OL]. 2023[2024−03−15]. https://www.iea.org.
    [5]
    LI Y T,WEI C,LIU X M,et al. Application of gasification slag in construction materials and high value-added materials:A review[J]. Construction and Building Materials,2023,402:133013. doi: 10.1016/j.conbuildmat.2023.133013
    [6]
    朱菊芬,李健,闫龙,等. 煤气化渣资源化利用研究进展及应用展望[J]. 洁净煤技术,2021,27(6):11−21.

    ZHU Jufen,LI Jian,YAN Long,et al. Research progress and application prospect of coal gasification slag resource utilization[J]. Clean Coal Technology,2021,27(6):11−21.
    [7]
    王辅臣,于广锁,龚欣,等. 大型煤气化技术的研究与发展[J]. 化工进展,2009,28(2):173−180. doi: 10.3321/j.issn:1000-6613.2009.02.001

    WANG Fuchen,YU Guangsuo,GONG Xin,et al. Research and development of large-scale coal gasification technology[J]. Chemical Industry and Engineering Progress,2009,28(2):173−180. doi: 10.3321/j.issn:1000-6613.2009.02.001
    [8]
    王辅臣. 煤气化技术在中国:回顾与展望[J]. 洁净煤技术,2021,27(1):1−33.

    WANG Fuchen. Coal gasification technologies in China:Review and prospect[J]. Clean Coal Technology,2021,27(1):1−33.
    [9]
    郭良元. 固定床固态排渣碎煤加压气化技术在国内应用现状[J]. 煤质技术,2023,38(4):39−45. doi: 10.3969/j.issn.1007-7677.2023.04.005

    GUO Liangyuan. Application status of fixed bed dry bottom crushed coal pressurized gasification technology in China[J]. Coal Quality Technology,2023,38(4):39−45. doi: 10.3969/j.issn.1007-7677.2023.04.005
    [10]
    王利峰. 我国煤气化技术发展与展望[J]. 洁净煤技术,2022,28(2):115−121.

    WANG Lifeng. Development and prospect of coal gasification technology in China[J]. Clean Coal Technology,2022,28(2):115−121.
    [11]
    周丽,梁晨,齐晓宾,等. 煤气化灰渣热处理利用技术研究进展[J]. 洁净煤技术,2023,29(7):65−77.

    ZHOU Li,LIANG Chen,QI Xiaobin,et al. Research progress of thermal treatment and utilization technology of coal gasification fine ash and slag[J]. Clean Coal Technology,2023,29(7):65−77.
    [12]
    张心潇. 气化细渣与煤混合燃烧动力学及灰渣中重金属析出特性研究[D]. 徐州:中国矿业大学,2021.

    ZHANG Xinxiao. Study on combustion kinetics and heavy metal precipitation characteristics of gasification fine slag mixed with coal[D]. Xuzhou:China University of Mining and Technology,2021.
    [13]
    齐晶晶. 煤化工生产技术[M]. 北京:化学工业出版社,2024.
    [14]
    汪伦. 不同粒径气化细渣理化性质及燃烧特性研究[D]. 淮南:安徽理工大学,2021.

    WANG Lun. Study on physical and chemical properties and combustion characteristics of gasification fine slag with different particle sizes[D]. Huainan:Anhui University of Science & Technology,2021.
    [15]
    KRISHNAMOORTHY V,PISUPATI S. A critical review of mineral matter related issues during gasification of coal in fixed,fluidized,and entrained flow gasifiers[J]. Energies,2015,8(9):10430−10463. doi: 10.3390/en80910430
    [16]
    程晓磊,张鑫. 现代煤气化技术现状及发展趋势综述[J]. 煤质技术,2021,36(1):1−9.

    CHENG Xiaolei,ZHANG Xin. Summary of present situation and development trend of modern coal gasification technology[J]. Coal Quality Technology,2021,36(1):1−9.
    [17]
    仇韩峰. 煤气化灰渣资源环境属性研究[D]. 太原:山西大学,2021.

    QIU Hanfeng. Study on environmental attributes of coal gasification ash resources[D]. Taiyuan:Shanxi University,2021.
    [18]
    LYU B,DENG X W,JIAO F S,et al. Enrichment and utilization of residual carbon from coal gasification slag:A review[J]. Process Safety and Environmental Protection,2023,171:859−873. doi: 10.1016/j.psep.2023.01.079
    [19]
    盛羽静. 气流床气化灰渣的理化特性研究[D]. 上海:华东理工大学,2017.

    SHENG Yujing. Study on physicochemical characteristics of slag from entrained-flow coal gasification[D]. Shanghai:East China University of Science and Technology,2017.
    [20]
    冯向港,王海燕,葛奋飞,等. 煤气化渣高值化利用的研究进展及应用展望[J]. 洁净煤技术,2023,29(11):122−132.

    FENG Xianggang,WANG Haiyan,GE Fenfei,et al. Research progress and application prospect of high-value utilization of coal gasification slag[J]. Clean Coal Technology,2023,29(11):122−132.
    [21]
    李金凤. 气化滤饼中碳赋存形态及循环掺烧可行性研究[J]. 洁净煤技术,2020,26(6):224−228.

    LI Jinfeng. Investigation on the occurrence of carbon in gasification filter cake and its feasibility of circulating combustion[J]. Clean Coal Technology,2020,26(6):224−228.
    [22]
    吴阳,赵世永,李博. 宁东煤气流床气化残渣特性研究[J]. 煤炭工程,2017,49(3):115−118.

    WU Yang,ZHAO Shiyong,LI Bo. Study on the residue features of Ningdong coal in entrained flow gasifiers[J]. Coal Engineering,2017,49(3):115−118.
    [23]
    宋瑞领,李静,付亮亮,等. 多喷嘴对置式水煤浆气化炉炉渣特性研究[J]. 洁净煤技术,2018,24(5):43−49.

    SONG Ruiling,LI Jing,FU Liangliang,et al. Characteristics of slags generated from multi-nozzle opposed coal-water slurry gasifier[J]. Clean Coal Technology,2018,24(5):43−49.
    [24]
    吕飞勇,初茉,易浩然,等. 磁性灰粒在不同粒级气化灰渣中的分布特性[J]. 化工进展,2022,41(5):2372−2378.

    LYU Feiyong,CHU Mo,YI Haoran,et al. Distribution characteristics of magnetic ash particles in gasification slag of different particle sizes[J]. Chemical Industry and Engineering Progress,2022,41(5):2372−2378.
    [25]
    王学斌,于伟,张韬,等. 基于粒度分级的煤气化细渣特性分析及利用研究[J]. 洁净煤技术,2021,27(3):61−69.

    WANG Xuebin,YU Wei,ZHANG Tao,et al. Characteristic analysis and utilization of coal gasification fine slag based on particle size classification[J]. Clean Coal Technology,2021,27(3):61−69.
    [26]
    吴昊东. 基于粒度分布特征的气流床气化细渣结构解析及反应性研究[D]. 银川:宁夏大学,2022.

    WU Haodong. Structural analysis and reactivity study of entrained-flow gasification fine slag based on particle size distribution characteristics[D]. Yinchuan:Ningxia University,2022.
    [27]
    Kang Shin-Gyoo. Fundamental studies of mineral matter transformation during pulverized coal combustion:residual ash formation[D]. Boston:Massachusetts Institute of Technology,1991.
    [28]
    SHIRAI H,TSUJI H,IKEDA M,et al. Influence of combustion conditions and coal properties on physical properties of fly ash generated from pulverized coal combustion[J]. Energy & Fuels,2009,23(7):3406−3411.
    [29]
    张杰,郭庆华,周志杰,等. 多喷嘴对置式水煤浆气化炉内颗粒物分布特性的实验研究[J]. 中国电机工程学报,2013,33(20):59−65.

    ZHANG Jie,GUO Qinghua,ZHOU Zhijie,et al. Experimental study of particle distribution in bench-cale opposed multi-burner gasifiers of coal water slurry[J]. Proceedings of the CSEE,2013,33(20):59−65.
    [30]
    卢珊珊. 气流床煤气化灰渣的特性研究[D]. 上海:华东理工大学,2011.

    LU Shanshan. Study on characteristics of entrained-flow coal gasification ash[D]. Shanghai:East China University of Science and Technology,2011.
    [31]
    张志清. 气化炉内颗粒物特性及气化灰渣在水煤浆制备中的应用研究[D]. 上海:华东理工大学,2019.

    ZHANG Zhiqing. Study on the characteristics of particulate matter in gasifier and the application of gasification ash in coal water slurry preparation[D]. Shanghai:East China University of Science and Technology,2019.
    [32]
    邬士军. 携带床气化条件下灰渣熔融特性实验研究[D]. 哈尔滨:哈尔滨工业大学,2013.

    WU Shijun. Experimental study on melting characteristics of ash under the condition of entrained bed gasification[D]. Harbin:Harbin Institute of Technology,2013.
    [33]
    李俏,董阳,Jow Jinder,等. 煤气化渣的基本性能及其应用途径分析[J]. 新型建筑材料,2023,50(3):33−36,41. doi: 10.3969/j.issn.1001-702X.2023.03.008

    LI Qiao,DONG Yang,JINDER J,et al. Fundamental characteristics and application of coal gasification slags[J]. New Building Materials,2023,50(3):33−36,41. doi: 10.3969/j.issn.1001-702X.2023.03.008
    [34]
    高旭霞,郭晓镭,龚欣. 气流床煤气化渣的特征[J]. 华东理工大学学报(自然科学版),2009,35(5):677−683.

    GAO Xuxia,GUO Xiaolei,GONG Xin. Characterization of slag from entrained-flow coal gasificaion[J]. Journal of East China University of Science and Technology,2009,35(5):677−683.
    [35]
    范宁,张逸群,樊盼盼,等. 煤气化渣特性分析及资源化利用研究进展[J]. 洁净煤技术,2022,28(8):145−154.

    FAN Ning,ZHANG Yiqun,FAN Panpan,et al. Research progress on characteristic analysis and resource utilization of coal gasification slag[J]. Clean Coal Technology,2022,28(8):145−154.
    [36]
    ZHANG J P,ZUO J,AI W D,et al. Preparation of a new high-efficiency resin deodorant from coal gasification fine slag and its application in the removal of volatile organic compounds in polypropylene composites[J]. Journal of Hazardous Materials,2020,384:121347. doi: 10.1016/j.jhazmat.2019.121347
    [37]
    MIAO Z K,CHEN L Q,CHEN K N,et al. Physical properties and microstructures of residual carbon and slag particles present in fine slag from entrained-flow coal gasification[J]. Advanced Powder Technology,2020,31(9):3781−3789. doi: 10.1016/j.apt.2020.07.019
    [38]
    WU T,GONG M,LESTER E,et al. Characterisation of residual carbon from entrained-bed coal water slurry gasifiers[J]. Fuel,2007,86(7−8):972−982. doi: 10.1016/j.fuel.2006.09.033
    [39]
    袁蝴蝶. 煤气化炉渣本征特征及应用基础研究[D]. 西安:西安建筑科技大学,2020.

    YUAN Hudie. Study on intrinsic characteristics and application basis of coal gasification slag[D]. Xi’an:Xi’an University of Architecture and Technology,2020.
    [40]
    苗泽凯. 煤气化细渣中残炭/矿物质协同构筑分级孔材料及捕集CO2研究[D]. 徐州:中国矿业大学,2022.

    MIAO Zekai. Study on carbon residue/minerals in fine coal gasification slag cooperatively constructing classified pore materials and capturing CO2[D]. Xuzhou:China University of Mining and Technology,2022.
    [41]
    GUO F H,LIU H,GUO Y,et al. Occurrence modes of water in gasification fine slag filter cake and drying behavior analysis:A case study[J]. Journal of Environmental Chemical Engineering,2021,9(1):104585. doi: 10.1016/j.jece.2020.104585
    [42]
    宋瑞领,蓝天. 气流床煤气化炉渣特性及综合利用研究进展[J]. 煤炭科学技术,2021,49(4):227−236.

    SONG Ruiling,LAN Tian. Review on characteristics and utilization of entrained-flow coal gasification residue[J]. Coal Science and Technology,2021,49(4):227−236.
    [43]
    尹洪峰,汤云,任耘,等. Texaco气化炉炉渣基本特性与应用研究[J]. 煤炭转化,2009,32(4):30−33. doi: 10.3969/j.issn.1004-4248.2009.04.008

    YIN Hongfeng,TANG Yun,REN Yun,et al. Study on the characteristic and application of gasification slag from texaco gasifier[J]. Coal Conversion,2009,32(4):30−33. doi: 10.3969/j.issn.1004-4248.2009.04.008
    [44]
    张婷,于露,李宇,等. 水煤浆气化炉渣的特性分析及应用探讨[J]. 当代化工研究,2020(19):88−90. doi: 10.3969/j.issn.1672-8114.2020.19.039

    ZHANG Ting,YU Lu,LI Yu,et al. Characteristic analysis and application discussion of coal water slurry gasifier slag[J]. Modern Chemical Research,2020(19):88−90. doi: 10.3969/j.issn.1672-8114.2020.19.039
    [45]
    杨宏泉,孙志刚,曲江山,等. 中石化典型地区气化炉渣基础物性分析研究[J]. 洁净煤技术,2021,27(3):101−108.

    YANG Hongquan,SUN Zhigang,QU Jiangshan,et al. Analysis and research on basic physical properties of gasification slag in representative areas of Sinopec[J]. Clean Coal Technology,2021,27(3):101−108.
    [46]
    赵永彬,吴辉,蔡晓亮,等. 煤气化残渣的基本特性研究[J]. 洁净煤技术,2015,21(3):110−113,74.

    ZHAO Yongbin,WU Hui,CAI Xiaoliang,et al. Basic characteristics of coal gasification residual[J]. Clean Coal Technology,2015,21(3):110−113,74.
    [47]
    景娟,李兆锋. 航天炉粉煤加压技术气化粗渣的研究[J]. 硅酸盐通报,2018,37(8):2601−2605.

    JING Juan,LI Zhaofeng. Study on the coarse slag from Hangtian pulverized coal pressure gasification technology(HT-L)[J]. Bulletin of the Chinese Ceramic Society,2018,37(8):2601−2605.
    [48]
    胡小波,杨晓勤,莫文龙,等. 循环流化床煤气化炉灰渣的组成结构特征与热转化性能[J]. 燃料化学学报,2022,50(10):1361−1370. doi: 10.1016/S1872-5813(22)60024-0

    HU Xiaobo,YANG Xiaoqin,MO Wenlong,et al. Structural characteristics and thermal conversion performance of ash and slag from circulating fluidized bed gasifier[J]. Journal of Fuel Chemistry and Technology,2022,50(10):1361−1370. doi: 10.1016/S1872-5813(22)60024-0
    [49]
    蒋登豪. 循环流化床煤气化过程强化试验研究[D]. 北京:中国科学院大学(中国科学院工程热物理研究所),2021.

    JIANG Denghao. Experimental study on strengthening coal gasification process in circulating fluidized bed[D]. Beijing:Institute of Engineering Thermophysics,Chinese Academy of Sciences,2021.
    [50]
    王亚丰. 煤气化产物的矿物学和环境地球化学研究[D]. 北京:中国矿业大学(北京),2021.

    WANG Yafeng. Mineralogy and environmental geochemistry of coal gasification products[D]. Beijing:China University of Mining & Technology-Beijing,2021.
    [51]
    张玉魁,张海霞,朱治平. 准东煤流化床气化飞灰的理化特性研究[J]. 燃料化学学报,2016,44(3):305−313.

    ZHANG Yukui,ZHANG Haixia,ZHU Zhiping. Physical and chemical properties of fly ash from fluidized bed gasification of Zhundong coal[J]. Journal of Fuel Chemistry and Technology,2016,44(3):305−313.
    [52]
    吴昊东,邵丰华,吕鹏,等. 气流床煤气化细渣结构、性质与其粒度分布关系研究[J]. 燃料化学学报,2022,50(5):513−522.

    WU Haodong,SHAO Fenghua,LYU Peng,et al. Study on the relationship between structure,properties and size distribution of fine slag from entrained flow gasification[J]. Journal of Fuel Chemistry and Technology,2022,50(5):513−522.
    [53]
    程庆辉. 煤炭产运销质量检测验收与选煤技术标准实用手册[M]. 北京:科海电子出版社,2003.
    [54]
    原永涛,纪元勋,齐立强. 飞灰粘附力测定装置的开发研究[J]. 华北电力技术,2002(7):45−54. doi: 10.3969/j.issn.1003-9171.2002.07.013

    YUAN Yongtao,JI Yuanxun,QI Liqiang. Development and research on equipment determinating FA’S adhesive power[J]. North China Electric Power,2002(7):45−54. doi: 10.3969/j.issn.1003-9171.2002.07.013
    [55]
    WANG T,STIEGEL G. Integrated gasification combined cycle (IGCC) technologies[M]. UK: Woodhead Publishing, 2017.
    [56]
    WU S Y,HUANG S,WU Y Q,et al. Characteristics and catalytic actions of inorganic constituents from entrained-flow coal gasification slag[J]. Journal of the Energy Institute,2015,88(1):93−103. doi: 10.1016/j.joei.2014.04.001
    [57]
    贺根良,郑亚兰,门长贵. 湿法气流床煤气化过程中N、S、As元素的迁移分析[J]. 煤化工,2009,37(6):10−14. doi: 10.3969/j.issn.1005-9598.2009.06.003

    HE Genliang,ZHENG Yalan,MEN Changgui. Analysis on the transfer of nitrogen,sulfur and arsenic in the process of wet-feed entrained flow pressure coal gasification[J]. Coal Chemical Industry,2009,37(6):10−14. doi: 10.3969/j.issn.1005-9598.2009.06.003
    [58]
    马超,王兵,樊盼盼,等. 煤气化渣基氨氮吸附剂的制备及吸附性能研究[J]. 洁净煤技术,2021,27(3):109−115.

    MA Chao,WANG Bing,FAN Panpan,et al. Research on preparation and adsorption properties of ammonia nitrogen sorbent based on coal gasification slag[J]. Clean Coal Technology,2021,27(3):109−115.
    [59]
    TOMECZEK J,PALUGNIOK H. Kinetics of mineral matter transformation during coal combustion[J]. Fuel,2002,81(10):1251−1258. doi: 10.1016/S0016-2361(02)00027-3
    [60]
    高海洋,梁龙,靳开宇,等. 煤气化渣资源化利用综述[J]. 煤炭科学技术,2024,52(8):192−208. doi: 10.12438/cst.2023-1147

    GAO Haiyang,LIANG Long,JIN Kaiyu,et al. Review on resource utilization of coal gasification slag[J]. Coal Science and Technology,2024,52(8):192−208. doi: 10.12438/cst.2023-1147
    [61]
    PAN C C,LIANG Q F,GUO X L,et al. Characteristics of different sized slag particles from entrained-flow coal gasification[J]. Energy & Fuels,2016,30(2):1487−1495.
    [62]
    高旭霞. 气流床煤气化条件下形成的渣和灰的特征研究[D]. 上海:华东理工大学,2009.

    GAO Xuxia. Characterization of slag feom entrained-bed gasifiers[D]. Shanghai:East China University of Science and Technology,2009.
    [63]
    须藤俊男. 粘土矿物学[M]. 北京:地质出版社,1981.
    [64]
    SRINIVASACHAR S,HELBLE J J,BONI A A. Mineral behavior during coal combustion 1. Pyrite transformations[J]. Progress in Energy and Combustion Science,1990,16(4):281−292. doi: 10.1016/0360-1285(90)90037-4
    [65]
    VAN DYK J C,MELZER S,SOBIECKI A. Mineral matter transformation during Sasol-Lurgi fixed bed dry bottom gasification–utilization of HT-XRD and FactSage modelling[J]. Minerals Engineering,2006,19(10):1126−1135. doi: 10.1016/j.mineng.2006.03.008
    [66]
    郭丹,李华,汪飞. 壳牌煤气化粉煤灰的特性研究[J]. 粉煤灰,2012,24(5):5−7.

    GUO Dan,LI Hua,WANG Fei. Research on characteristics of fly ash by shell coal gasification process[J]. Coal Ash China,2012,24(5):5−7.
    [67]
    田斌,杨芳芳,庞亚恒,等. 气化温度对型煤加压固定床气化反应特性的影响[J]. 中国电机工程学报,2013,33(S1):128−134.

    TIAN Bin,YANG Fangfang,PANG Yaheng,et al. Effect of temperature on the reactivity characteristics of briquette during high pressure fixed-bed gasification[J]. Proceedings of the CSEE,2013,33(S1):128−134.
    [68]
    SHEN Z J,NIKOLIC H,CAUDILL L S,et al. A deep insight on the coal ash-to-slag transformation behavior during the entrained flow gasification process[J]. Fuel,2021,289:119953. doi: 10.1016/j.fuel.2020.119953
    [69]
    张小东,刘建忠,郭晓东,等. 影响灰渣可燃物的原因分析及对策[J]. 煤,2008,17(4):26−27. doi: 10.3969/j.issn.1005-2798.2008.04.012

    ZHANG Xiaodong,LIU Jianzhong,GUO Xiaodong,et al. Cause analysis and countermeasures of influencing ash combustible materials[J]. Coal,2008,17(4):26−27. doi: 10.3969/j.issn.1005-2798.2008.04.012
    [70]
    WANG P,MASSOUDI M. Slag behavior in gasifiers. part I:Influence of coal properties and gasification conditions[J]. Energies,2013,6(2):784−806. doi: 10.3390/en6020784
    [71]
    汤云,袁蝴蝶,尹洪峰,等. 几种典型煤气化炉渣的碳热还原氮化过程[J]. 煤炭学报,2016,41(12):3136−3141.

    TANG Yun,YUAN Hudie,YIN Hongfeng,et al. Carbothermal reduction nitridation process of several typical coal gasification slag[J]. Journal of China Coal Society,2016,41(12):3136−3141.
    [72]
    WU S Y,HUANG S,JI L Y,et al. Structure characteristics and gasification activity of residual carbon from entrained-flow coal gasification slag[J]. Fuel,2014,122:67−75. doi: 10.1016/j.fuel.2014.01.011
    [73]
    顾彧彦,乔秀臣. 煤气化细渣制备碳硅复合材料吸附去除水中Pb2+[J]. 化工环保,2019,39(1):87−93. doi: 10.3969/j.issn.1006-1878.2019.01.017

    GU Yuyan,QIAO Xiuchen. Adsorption of Pb2+ from water by carbon-silica composite prepared from coal gasification fine slag[J]. Environmental Protection of Chemical Industry,2019,39(1):87−93. doi: 10.3969/j.issn.1006-1878.2019.01.017
    [74]
    杨帅,石立军. 煤气化细渣组分分析及其综合利用探讨[J]. 煤化工,2013,41(4):29−31,38. doi: 10.3969/j.issn.1005-9598.2013.04.009

    YANG Shuai,SHI Lijun. Composition analysis of the fine slag from coal gasification and its comprehensive utilization[J]. Coal Chemical Industry,2013,41(4):29−31,38. doi: 10.3969/j.issn.1005-9598.2013.04.009
    [75]
    HUO W,ZHOU Z J,WANG F C,et al. Experimental study of pore diffusion effect on char gasification with CO2 and steam[J]. Fuel,2014,131:59−65. doi: 10.1016/j.fuel.2014.04.058
    [76]
    XU S Q,ZHOU Z J,GAO X X,et al. The gasification reactivity of unburned carbon present in gasification slag from entrained-flow gasifier[J]. Fuel Processing Technology,2009,90(9):1062−1070. doi: 10.1016/j.fuproc.2009.04.006
    [77]
    王冀,孔令学,白进,等. 煤气化灰渣中残炭对灰渣流动性影响的研究进展[J]. 洁净煤技术,2021,27(1):181−192.

    WANG Ji,KONG Lingxue,BAI Jin,et al. Research progress on the effect of residual carbon in coal gasification slag on ash and slag flow property[J]. Clean Coal Technology,2021,27(1):181−192.
    [78]
    毛立睿. 气流床气化细渣特征及熔渣中炭与灰的作用机制[D]. 淮南:安徽理工大学,2023.

    MAO Lirui. Characteristics of entrained-flow gasification fine slag and the mechanism of carbon and ash in slag[D]. Huainan:Anhui University of Science & Technology,2023.
    [79]
    WAGNER N J,MATJIE R H,SLAGHUIS J H,et al. Characterization of unburned carbon present in coarse gasification ash[J]. Fuel,2008,87(6):683−691. doi: 10.1016/j.fuel.2007.05.022
    [80]
    WANG J,KONG L X,BAI J,et al. The role of residual char on ash flow behavior,Part 1:The effect of graphitization degree of residual char on ash fusibility[J]. Fuel,2018,234:1173−1180. doi: 10.1016/j.fuel.2018.08.011
    [81]
    WANG J,KONG L X,BAI J,et al. The role of residual char on ash flow behavior,Part 3:Effect of Fe2O3 content on ash fusibility and carbothermal reaction[J]. Fuel,2020,280:118705. doi: 10.1016/j.fuel.2020.118705
    [82]
    WANG J,KONG L X,BAI J,et al. The role of residual char on ash flow behavior,Part 2:Effect of SiO2/Al2O3 on ash fusibility and carbothermal reaction[J]. Fuel,2019,255:115846. doi: 10.1016/j.fuel.2019.115846
    [83]
    GORDON GE,ZOLLER WH. Normalization and interpretation of atmospheric trace element concentration patterns[C]//Proceedings of the Annual NSF Trace Contaminants Conference (National Science Foundation),1974.
    [84]
    MEIJ Ruud,JANSSEN LHJM,KOOIJ JV. Air pollutant emissions from coal-fired power stations[R]. Netherlands:Kema Science Technology Report,1986.
    [85]
    STREETS D G,HOROWITZ H M,JACOB D J,et al. Total mercury released to the environment by human activities[J]. Environmental Science & Technology,2017,51(11):5969−5977.
    [86]
    WAN Z X,DUAN L Y,HU X D,et al. Removal of mercury from flue gas using coal gasification slag[J]. Fuel Processing Technology,2022,231:107258. doi: 10.1016/j.fuproc.2022.107258
    [87]
    王云鹤,李海滨,黄海涛,等. 重金属在煤气化过程的分布迁移规律及控制[J]. 中国环境科学,2002,22(6):556−560. doi: 10.3321/j.issn:1000-6923.2002.06.017

    WANG Yunhe,LI Haibin,HUANG Haitao,et al. Distribution rule and control of heavy metals during coal gasification[J]. China Environmental Science,2002,22(6):556−560. doi: 10.3321/j.issn:1000-6923.2002.06.017
    [88]
    JIANG P,XIE C R,LUO C L,et al. Distribution and modes of occurrence of heavy metals in opposed multi-burner coal-water-slurry gasification plants[J]. Fuel,2021,303:121163. doi: 10.1016/j.fuel.2021.121163
    [89]
    TANG Y G,GUO X,XIE Q,et al. Petrological characteristics and trace element partitioning of gasification residues from slagging entrained-flow gasifiers in ningdong,China[J]. Energy & Fuels,2018,32(3):3052−3067.
    [90]
    WANG Yafeng,TANG Yuegang,WANG Baolin,et al. Finkelman. Geochemistry and mineralogy of coal and gasification byproducts from two entrained-flow coal gasification plants in Ningdong,China[C]//2018 International Pittsburgh Coal Conference,2018.
    [91]
    BUNT J R,WAANDERS F B. Trace element behaviour in the Sasol-Lurgi fixed-bed dry-bottom gasifier. Part 3–The non-volatile elements:Ba,Co,Cr,Mn,and V[J]. Fuel,2010,89(3):537−548. doi: 10.1016/j.fuel.2009.04.018
    [92]
    SENIOR C L,BOOL L E,MORENCY J R. Laboratory study of trace element vaporization from combustion of pulverized coal[J]. Fuel Processing Technology,2000,63(2-3):109−124. doi: 10.1016/S0378-3820(99)00092-2
    [93]
    王晓帅,唐跃刚,桓斌斌,等. 宁东气化厂煤气化过程中几种微量元素的富集特性[J]. 中国煤炭地质,2016,28(4):14−18. doi: 10.3969/j.issn.1674-1803.2016.04.03

    WANG Xiaoshuai,TANG Yuegang,HUAN Binbin,et al. Some trace elements enrichment features during coal gasification process in ningdong coal gasification plant[J]. Coal Geology of China,2016,28(4):14−18. doi: 10.3969/j.issn.1674-1803.2016.04.03
    [94]
    NIU M F,FU Y G,LIU S Q. Distribution and leachability of hazardous trace elements in Lurgi gasification ash from a Coal - to - SNG plant[J]. Journal of the Energy Institute,2021,98:223−233.
    [95]
    黄亚继,金保升,仲兆平,等. 煤气化过程中痕量元素迁移规律与气化温度的关系[J]. 中国电机工程学报,2006,26(4):10−15. doi: 10.3321/j.issn:0258-8013.2006.04.003

    HUANG Yaji,JIN Baosheng,ZHONG Zhaoping,et al. The relationship between occurrence of trace elements and gasification temperature[J]. Proceedings of the CSEE,2006,26(4):10−15. doi: 10.3321/j.issn:0258-8013.2006.04.003
    [96]
    黄亚继,金保升,仲兆平,等. 气化压力对煤气化过程中痕量元素迁移规律的影响[J]. 东南大学学报(自然科学版),2008,38(1):92−96.

    HUANG Yaji,JIN Baosheng,ZHONG Zhaoping,et al. Effect of gasification pressure on the occurrence of trace elements[J]. Journal of Southeast University (Natural Science Edition),2008,38(1):92−96.
    [97]
    黄亚继,金保升,仲兆平,等. 空煤比对煤气化过程中痕量元素迁移规律的影响[J]. 热能动力工程,2004,19(4):402−407. doi: 10.3969/j.issn.1001-2060.2004.04.018

    HUANG Yaji,JIN Baosheng,ZHONG Zhaoping,et al. The influence of air-coal ratio on the migration mechanism of trace elements during a gasification process[J]. Journal of Engineering for Thermal Energy and Power,2004,19(4):402−407. doi: 10.3969/j.issn.1001-2060.2004.04.018
    [98]
    YOSHIIE R, TAYA , ICHIYANAGI T , et al. Emissions of particles and trace elements from coal gasification[J]. Fuel,2013,108:67−72.
    [99]
    陈博文,熊卓,赵永椿,等. 重金属在煤气化过程中迁移规律及在气化渣中浸出行为和固化处理综述[J]. 洁净煤技术,2023,29(7):173−188.

    CHEN Bowen,XIONG Zhuo,ZHAO Yongchun,et al. Migration pattern and solidification treatment technology of heavy metals in coal gasification slag:A review[J]. Clean Coal Technology,2023,29(7):173−188.
    [100]
    ZHAO S L,DUAN Y F,LU J C,et al. Chemical speciation and leaching characteristics of hazardous trace elements in coal and fly ash from coal-fired power plants[J]. Fuel,2018,232:463−469. doi: 10.1016/j.fuel.2018.05.135
    [101]
    NEMATI K,ABU BAKAR N K,ABAS M R,et al. Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh,Selangor,Malaysia[J]. Journal of Hazardous Materials,2011,192(1):402−410.
    [102]
    LUAN J D,LI A M,SU T,et al. Translocation and toxicity assessment of heavy metals from circulated fluidized-bed combustion of oil shale in Huadian,China[J]. Journal of Hazardous Materials,2009,166(2-3):1109−1114. doi: 10.1016/j.jhazmat.2008.12.023
    [103]
    郭旸. 宁东煤气化细渣残碳富集及氧化/活化过程中重金属迁移与演化机理[D]. 徐州:中国矿业大学,2023.

    GUO Yang. Mechanism of migration and evolution of heavy metals during carbon enrichment and oxidation/activation of coal gasification fine slag in Ningdong[D]. Xuzhou:China University of Mining and Technology,2023.
    [104]
    LIU J L,LI Y L,ZHANG B,et al. Ecological risk of heavy metals in sediments of the Luan River source water[J]. Ecotoxicology,2009,18(6):748−758. doi: 10.1007/s10646-009-0345-y
    [105]
    郝趣绕. 高磷污泥焚烧底渣煅烧过程重金属脱除规律研究[D]. 沈阳:沈阳航空航天大学,2015.

    HAO Qurao. The research of removal of heavy metals in calcination of the high phosphorus incinarated sludge bottom ash[D]. Shenyang:Shenyang Aerospace University,2015.
    [106]
    JAIN C K. Metal fractionation study on bed sediments of River Yamuna,India[J]. Water Research,2004,38(3):569−578. doi: 10.1016/j.watres.2003.10.042
    [107]
    马晶,马玉龙,朱莉,等. 煤气化渣结构组成及其主要金属元素赋存形态[J]. 化工进展,2024,43(10):5857−5866.

    MA Jing,MA Yulong,ZHU Li,et al. Structure composition of coal gasification slag and speciation of main metals in coal gasification slag[J]. Chemical Industry and Engineering Progress,2024,43(10):5857−5866.
    [108]
    ZANDI M,RUSSELL N V. Design of a leaching test framework for coal fly ash accounting for environmental conditions[J]. Environmental Monitoring and Assessment,2007,131(1−3):509−526. doi: 10.1007/s10661-006-9496-y
    [109]
    IZQUIERDO M,QUEROL X. Leaching behaviour of elements from coal combustion fly ash:An overview[J]. International Journal of Coal Geology,2012,94:54−66. doi: 10.1016/j.coal.2011.10.006
    [110]
    GUO Y,ZHANG Y X,ZHAO X,et al. Multifaceted evaluation of distribution,occurrence,and leaching features of typical heavy metals in different-sized coal gasification fine slag from Ningdong region,China:A case study[J]. Science of the Total Environment,2022,831:154726. doi: 10.1016/j.scitotenv.2022.154726
    [111]
    张佳圆,吴文涛,魏勇,等. 不同pH淋滤条件下飞灰中铬、锌、镍、铅的环境效应[J]. 地球环境学报,2019,10(3):299−306.

    ZHANG Jiayuan,WU Wentao,WEI Yong,et al. Environmental effects of chromium,zinc,nickel and lead in fly ash under different pH leaching conditions[J]. Journal of Earth Environment,2019,10(3):299−306.

Catalog

    Article views (90) PDF downloads (16) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return