Citation: | LI Keji,QI Tingye,FENG Guorui,et al. Preparation of cementitious materials from biomass power plant ash and the application of cementitious materials in backfill material[J]. Coal Science and Technology,2025,53(6):263−276. DOI: 10.12438/cst.2024-0463 |
The backfill technology using paste-like materials boasts advantages of excellent fluidity and high strength, ensuring long-distance transportation and pressure-bearing capacity, thereby facilitating its rapid development in the coal mining industry. However, its widespread application is hindered by the reliance on costly cement as a binder. To reduce costs, current research explores the utilization of inexpensive biomass power plant ash, processed through hydrothermal synthesis and low-temperature calcination, to fabricate a novel cementitious material as a substitute for cement in backfilling. X-ray diffraction and scanning electron microscopy are employed to analyze the hydrothermally synthesized precursors and the low-temperature calcined clinker, investigating the effects of hydrothermal synthesis and low-temperature calcination on the phase development and microstructure of the novel cementitious material. Orthogonal experimental design is adopted to systematically study the impact of various factors and their levels on the properties of the cementitious material, identifying the optimal combination of factors for the hydrothermal synthesis-low temperature calcination process. The feasibility of applying this optimally synthesized novel cementitious material in backfilling is further examined. The results indicate that hydrothermal synthesis significantly accelerates the reaction rate, and the precursor obtained via hydrothermal synthesis more effectively transforms into active substances under low-temperature calcination. Optimal performance is achieved when the Ca/Si moral ratio of raw materials is 1.5, the hydrothermal synthesis temperature is 90 ℃, the duration of hydrothermal synthesis is 3 hours, and the calcination temperature is 850℃. Backfill material prepared with a mass ratio of gangue∶fly ash∶novel cementitious material∶water as 5∶3∶2∶2, using the optimally synthesized cementitious material, meet the requirements for compressive strength and flowability. This study concludes that the novel cementitious material prepared from biomass power plant ash via hydrothermal synthesis and low-temperature calcination can replace cement in backfill materials, reducing the cost of binders in backfill materials. This not only promotes the adoption of paste-like backfill mining technology but also facilitates the utilization of biomass power plant fly ash as a solid waste resource.
[1] |
周彦名,王娇月,王诗云,等. 我国生物质资源能源开发利用潜力评估[J]. 生态学杂志,2024,43(9):2702−2713.
ZHOU Yanming,WANG Jiaoyue,WANG Shiyun,et al. Assessment of biomass resources for energy use potential in China[J]. Chinese Journal of Ecology,2024,43(9):2702−2713.
|
[2] |
NIE Y Y,CHANG S Y,CAI W J,et al. Spatial distribution of usable biomass feedstock and technical bioenergy potential in China[J]. GCB Bioenergy,2020,12(1):54−70. doi: 10.1111/gcbb.12651
|
[3] |
FU T C,KE J H,ZHOU S K,et al. Estimation of the quantity and availability of forestry residue for bioenergy production in China[J]. Resources,Conservation and Recycling,2020,162:104993.
|
[4] |
马隆龙,唐志华,汪丛伟,等. 生物质能研究现状及未来发展策略[J]. 中国科学院院刊,2019,34(4):434−442.
MA Longlong,TANG Zhihua,WANG Congwei,et al. Research status and future development strategy of biomass energy[J]. Bulletin of Chinese Academy of Sciences,2019,34(4):434−442.
|
[5] |
李晋,蔡闻佳,王灿,等. 碳中和愿景下中国电力部门的生物质能源技术部署战略研究[J]. 中国环境管理,2021,13(1):59−64.
LI Jin,CAI Wenjia,WANG Can,et al. The deployment strategy of bioenergy technology in China’s power sector under the vision of carbon neutrality[J]. Chinese Journal of Environmental Management,2021,13(1):59−64.
|
[6] |
赵开兴. 生物质焚烧灰渣资源化技术分析与应用[J]. 节能与环保,2023(4):62−64. doi: 10.3969/j.issn.1009-539X.2023.04.018
ZHAO Kaixing. Analysis and application of biomass incineration ash recycling technology[J]. Energy Conservation & Environmental Protection,2023(4):62−64. doi: 10.3969/j.issn.1009-539X.2023.04.018
|
[7] |
梁星星,张永旺,王斌,等. 生物质电厂废弃物草木灰成分分析及成形[J]. 化工进展,2020,39(6):2487−2494.
LIANG Xingxing,ZHANG Yongwang,WANG Bin,et al. Component analysis and forming of waste-plant ash from biomass power plant[J]. Chemical Industry and Engineering Progress,2020,39(6):2487−2494.
|
[8] |
赵保峰,谢洪璋,任常在,等. 生物质电厂灰渣建材化应用[J]. 科学技术与工程,2022,22(17):6802−6811.
ZHAO Baofeng,XIE Hongzhang,REN Changzai,et al. Application of biomass power plant ash as building materials[J]. Science Technology and Engineering,2022,22(17):6802−6811.
|
[9] |
WANG H C,QI T Y,FENG G R,et al. Effect of partial substitution of corn straw fly ash for fly ash as supplementary cementitious material on the mechanical properties of cemented coal gangue backfill[J]. Construction and Building Materials,2021,280:122553. doi: 10.1016/j.conbuildmat.2021.122553
|
[10] |
FENG G R,QI T Y,GUO Y X,et al. Physical and chemical characterization of the ash of fallen Chinese willow leaves:Effects of calcination temperature and aqueous solution[J]. Combustion Science and Technology,2020,192(5):871−884. doi: 10.1080/00102202.2019.1594801
|
[11] |
张雁茹,任常在,宋占龙,等. 生物质电厂灰渣替代水泥掺合料的性能研究[J]. 无机盐工业,2023,55(10):128−135.
ZHANG Yanru,REN Changzai,SONG Zhanlong,et al. Study on performance of biomass power plant ash as alternative to cement clinker in blended cements[J]. Inorganic Chemicals Industry,2023,55(10):128−135.
|
[12] |
唐宁,王正君,贾明霖,等. 生物质电厂灰混凝土抗渗性能研究[J]. 广东建材,2024,40(1):18−20.
TANG Ning,WANG Zhengjun,JIA Minglin,et al. Study on the impermeability performance of biomass power plant ash concrete[J]. Guangdong Building Materials,2024,40(1):18−20.
|
[13] |
姜荣辉,王正君,许鹏,等. 温度处理对生物质电厂灰作水泥胶砂掺合料的影响分析[J]. 混凝土,2021(11):93−97,103. doi: 10.3969/j.issn.1002-3550.2021.11.020
JIANG Ronghui,WANG Zhengjun,XU Peng,et al. Analysis of the influence of temperature treatment on biomass power plant ash used as cement mortar admixture[J]. Concrete,2021(11):93−97,103. doi: 10.3969/j.issn.1002-3550.2021.11.020
|
[14] |
许鹏,王正君,宫滢. 生物质电厂飞灰作混凝土掺合料的分析与评价[J]. 森林工程,2018,34(6):87−92.
XU Peng,WANG Zhengjun,GONG Ying. Analysis and evaluation of biomass ash from biomass power plant used as concrete admixture[J]. Forest Engineering,2018,34(6):87−92.
|
[15] |
SALVO M,RIZZO S,CALDIROLA M,et al. Biomass ash as supplementary cementitious material (SCM)[J]. Advances in Applied Ceramics,2015,114(sup1):S3−S10. doi: 10.1179/1743676115Y.0000000043
|
[16] |
张吉雄,张强,周楠,等. 煤基固废充填开采技术研究进展与展望[J]. 煤炭学报,2022,47(12):4167−4181.
ZHANG Jixiong,ZHANG Qiang,ZHOU Nan,et al. Research progress and prospect of coal based solid waste backfilling mining technology[J]. Journal of China Coal Society,2022,47(12):4167−4181.
|
[17] |
LIU H B,LIU Z L. Recycling utilization patterns of coal mining waste in China[J]. Resources,Conservation and Recycling,2010,54(12):1331−1340.
|
[18] |
周林邦,孙星海,刘泽,等. 大掺量粉煤灰基矿井充填材料的制备、工作性能与微观结构的研究[J]. 煤炭学报,2023,48(12):4536−4548.
ZHOU Linbang,SUN Xinghai,LIU Ze,et al. Study on preparation,working performance and microstructure of coal mine filling material with large amount of fly ash[J]. Journal of China Coal Society,2023,48(12):4536−4548.
|
[19] |
钱鸣高,许家林,缪协兴. 煤矿绿色开采技术[J]. 中国矿业大学学报,2003,32(4):343−348.
QIAN Minggao,XU Jialin,MIAO Xiexing. Green technique in coal mining[J]. Journal of China University of Mining & Technology,2003,32(4):343−348.
|
[20] |
朱梦博,刘浪,王双明,等. 短-长壁工作面充填无煤柱开采方法研究[J]. 采矿与安全工程学报,2022,39(6):1116−1124.
ZHU Mengbo,LIU Lang,WANG Shuangming,et al. Short-and long-walls backfilling pillarless coal mining method[J]. Journal of Mining & Safety Engineering,2022,39(6):1116−1124.
|
[21] |
胡炳南. 我国煤矿充填开采技术及其发展趋势[J]. 煤炭科学技术,2012,40(11):1−5,18.
HU Bingnan. Backfill mining technology and development tendency in China coal mine[J]. Coal Science and Technology,2012,40(11):1−5,18.
|
[22] |
孙希奎. 矿山绿色充填开采发展现状及展望[J]. 煤炭科学技术,2020,48(9):48−55.
SUN Xikui. Present situation and prospect of green backfill mining in mines[J]. Coal Science and Technology,2020,48(9):48−55.
|
[23] |
杨科,赵新元,何祥,等. 多源煤基固废绿色充填基础理论与技术体系[J]. 煤炭学报,2022,47(12):4201−4216.
YANG Ke,ZHAO Xinyuan,HE Xiang,et al. Basic theory and key technology of multi-source coal-based solid waste for green backfilling[J]. Journal of China Coal Society,2022,47(12):4201−4216.
|
[24] |
GONG Y F,FANG Y H. Preparation of belite cement from stockpiled high-carbon fly ash using granule-hydrothermal synthesis method[J]. Construction and Building Materials,2016,111:175−181. doi: 10.1016/j.conbuildmat.2016.02.043
|
[25] |
YANG Z J,KANG D,ZHANG D,et al. Crystal transformation of calcium silicate minerals synthesized by calcium silicate slag and silica fume with increase of C/S molar ratio[J]. Journal of Materials Research and Technology,2021,15:4185−4192. doi: 10.1016/j.jmrt.2021.10.047
|
[26] |
林伟辉,付甲,王志华,等. 不同钙硅比水化硅酸钙力学性能的分子动力学模拟[J]. 材料导报,2017,31(20):158−163,169. doi: 10.11896/j.issn.1005-023X.2017.020.032
LIN Weihui,FU Jia,WANG Zhihua,et al. Molecular dynamics simulations of mechanical properties of C-S-H structures with varying calcium-to-silicon ratios[J]. Materials Review,2017,31(20):158−163,169. doi: 10.11896/j.issn.1005-023X.2017.020.032
|
[27] |
WANG S P,PENG X Q,TANG L P,et al. Influence of hydrothermal synthesis conditions on the formation of calcium silicate hydrates:From amorphous to crystalline phases[J]. Journal of Wuhan University of Technology-Mater Sci Ed,2018,33(5):1150−1158. doi: 10.1007/s11595-018-1947-0
|
[28] |
YANG Z J,ZHANG D,JIAO Y,et al. Crystal evolution of calcium silicate minerals synthesized by calcium silicon slag and silica fume with increase of hydrothermal synthesis temperature[J]. Materials,2022,15(4):1620. doi: 10.3390/ma15041620
|
[29] |
郭伟,王春,俞平胜,等. 水热合成-低温煅烧硫铝酸钙水泥熟料矿物的形成过程[J]. 硅酸盐学报,2018,46(2):206−211.
GUO Wei,WANG Chun,YU Pingsheng,et al. Mineral formation mechanism of calcium sulphoaluminate cement clinker in hydrothermal-low temperature sintering process[J]. Journal of the Chinese Ceramic Society,2018,46(2):206−211.
|
[30] |
杨世达. 生物质与煤混燃灰地聚物充填体研发及强度形成机理研究[D]. 阜新:辽宁工程技术大学,2022.
YANG Shida. Research and development of ash geopolymer filling body mixed with biomass and coal and study on strength formation mechanism[D]. Fuxin:Liaoning Technical University,2022.
|
[31] |
邵春瑞,李俊清,赵宝友. 综放工作面过密集空巷群高水充填技术研究及应用[J]. 煤炭工程,2022,54(6):57−63.
SHAO Chunrui,LI Junqing,ZHAO Baoyou. High water filling technology for fully mechanized top-coal caving face crossing close-set abandoned roadway groups[J]. Coal Engineering,2022,54(6):57−63.
|
[32] |
王保勤. 古城煤矿膏体充填材料影响因素分析及配比优化[J]. 当代化工研究,2022(15):132−134. doi: 10.3969/j.issn.1672-8114.2022.15.042
WANG Baoqin. Analysis of influencing factors and ratio optimization of paste backfill material in Gucheng coal mine[J]. Modern Chemical Research,2022(15):132−134. doi: 10.3969/j.issn.1672-8114.2022.15.042
|
[33] |
QI T Y,GAO X Y,FENG G R,et al. Effect of biomass power plant ash on fresh properties of cemented coal gangue backfill[J]. Construction and Building Materials,2022,340:127853. doi: 10.1016/j.conbuildmat.2022.127853
|
[34] |
QIU J P,GUO Z B,YANG L,et al. Effects of packing density and water film thickness on the fluidity behaviour of cemented paste backfill[J]. Powder Technology,2020,359:27−35. doi: 10.1016/j.powtec.2019.10.046
|
[35] |
元强,邓德华,张文恩,等. 粉煤灰掺量、水胶比对砂浆流动度和强度的影响[J]. 粉煤灰,2005,17(1):7−9.
YUAN Qiang,DENG Dehua,ZHANG Wenen,et al. Effect of fly ash mixture,water/cementitious materials ratio on flowability and strength of mortar[J]. Coal Ash China,2005,17(1):7−9.
|
1. |
王涛,孟帆,弋伟斋,田晓月,李睿康,苏彬,刘利涛,罗振敏. 碳酸钾改性干水-六氟丙烷抑制甲烷爆炸特性. 高压物理学报. 2025(04): 79-90 .
![]() | |
2. |
李倓,赵恒泽,李晔,赵艺. 固体废弃物制备矿用防灭火复合凝胶研究进展. 煤炭科学技术. 2024(08): 96-105 .
![]() | |
3. |
杨小龙,徐青云,徐博文,贺雄,冯剑. 矿井瓦斯灾害的防治现状与综合治理浅析. 山西大同大学学报(自然科学版). 2024(05): 95-98 .
![]() |