Citation: | GU Xinbo,PAN Weidong,A SIhaer Niyazibieke ,et al. Study on carbon emission accounting and emission reduction path of coal production in coal mine[J]. Coal Science and Technology,2025,53(S1):497−507. DOI: 10.12438/cst.2024-0378 |
In the energy industry, achieving the goal of carbon peak and carbon neutrality is the main task. With the continuous advancement of the dual-carbon strategy, the industry regulatory model will gradually change from the current “energy dual control” to “carbon emission dual control” and emission reduction will become a firm principle. In recent years, the coal industry has deeply practiced the concept of green and low-carbon. Coal enterprises have unified the layout of the dual-carbon target from the strategic level, formulated their own carbon peak and carbon neutralization action plan, and comprehensively planned the strategic objectives, key tasks and major projects, so as to draw the specific implementation path of carbon peak and carbon neutralization. Choosing the appropriate carbon emission calculation model and scientific emission reduction strategy plays a vital role in optimizing the carbon emission management of the coal industry and promoting the green and low-carbon transformation of China’s coal industry.Clarifying the characteristics of carbon emissions in underground coal mines is the premise and basis for achieving the goal of “double carbon” in underground coal mines. Aiming at the near-zero emission of carbon dioxide, combined with the “Guidelines for National Greenhouse Gas Inventories: IPCC—2019” and the standards for greenhouse gas emission accounting of coal enterprises, a specific accounting method for carbon dioxide emissions in all aspects of coal production in the whole life cycle of underground coal mines is proposed, and a carbon emission accounting model for coal production in underground coal mines is constructed. Taking a typical coal mine as the engineering background, the carbon emissions in the mining process of the coal mine are calculated and analyzed. The results show that fugitive emissions and in-plant transportation are important parts of carbon emissions from coal mining, accounting for 38.2% and 18.9% of the total, respectively. According to the classification of carbon emission sources, the consumption of electricity accounts for 48.5% of carbon dioxide emissions, the largest proportion. On this basis, the carbon emission reduction path of underground coal mine and the implementation path of “zero carbon mine” are put forward. The research results can provide theoretical guidance for the low-carbon development of underground coal mines.
[1] |
IEA. CO2 Emissions in 2022[R/OL]. (2023‒03‒02) [2024‒02‒25]. https://www.iea.org/reports/co2-emissions-in-2022.
|
[2] |
谭波,宋华,司硕,等. 煤炭清洁燃烧技术及工程应用[J]. 煤炭科学技术,2022,50(S2):393−402.
TAN Bo,SONG Hua,SI Shuo,et al. Clean coal combustion technology and its engineering application[J]. Coal Science and Technology,2022,50(S2):393−402.
|
[3] |
中共中央国务院. 关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见[EB/OL]. (2021–09–22) [2023–10–22]. https://www.ccdi.gov.cn/toutu/202110/t20211024_252779.html.
The Central Committee of The State Council of China. Working guidance for carbon dioxide peaking and carbonneutrality in full and faithful implementation of the new development philosophy[EB/OL]. (2021–09–22) [2023–10–22]. https://www.ccdi.gov.cn/toutu/202110/t20211024_252779.html.
|
[4] |
任世华,谢亚辰,焦小淼,等. 煤炭开发过程碳排放特征及碳中和发展的技术途径[J]. 工程科学与技术,2022,54(1):60−68.
REN Shihua,XIE Yachen,JIAO Xiaomiao,et al. Characteristics of carbon emissions during coal development and technical approaches for carbon neutral development[J]. Advanced Engineering Sciences,2022,54(1):60−68.
|
[5] |
赵晓毅. 煤炭企业节能减排效果评价指标体系研究[J]. 消费导刊,2010(4):106−107.
ZHAO Xiaoyi. Study on evaluation index system of energy saving and emission reduction effect in coal enterprises[J]. Consume Guide,2010(4):106−107.
|
[6] |
ZHAO G,GAO X,WANG Z R,et al. A mechanism model for accurately estimating carbon emissions on a micro scale of iron-making system[J]. ISIJ International,2019,59(2):381−390. doi: 10.2355/isijinternational.ISIJINT-2018-239
|
[7] |
郑玉蓉,王耀龙,张飞,等. 露天煤矿碳排放核算及碳中和实现路径:以魏家峁煤矿为例[J]. 中国矿业,2024,33(5):80−88. doi: 10.12075/j.issn.1004-4051.20240306
ZHENG Yurong,WANG Yaolong,ZHANG Fei,et al. Accounting of carbon emission in open-pit coal mines and path for carbon neutrality:Taking Weijiamao Coal Mine as an example[J]. China Mining Magazine,2024,33(5):80−88. doi: 10.12075/j.issn.1004-4051.20240306
|
[8] |
才庆祥,刘福明,陈树召. 露天煤矿温室气体排放计算方法[J]. 煤炭学报,2012,37(1):103−106.
CAI Qingxiang,LIU Fuming,CHEN Shuzhao. Calculation method of greenhouse gas emission in open pit coal mines[J]. Journal of China Coal Society,2012,37(1):103−106.
|
[9] |
李鑫. 煤炭开发环节碳排放测算及低碳路径研究[J]. 煤炭经济研究,2021,41(7):39−44.
LI Xin. Research on carbon emission calculation and low-carbon pathway in coal development[J]. Coal Economic Research,2021,41(7):39−44.
|
[10] |
吴严鹏,王文晶,魏宇飞,等. 煤炭产业碳排放核算方法及低碳发展路径研究[J]. 煤炭经济研究,2024,44(6):67−75.
WU Yanpeng,WANG Wenjing,WEI Yufei,et al. Research on carbon emission accounting and low-carbon development path of coal industry[J]. Coal Economic Research,2024,44(6):67−75.
|
[11] |
ZHU T,BIAN W J,ZHANG S Q,et al. An improved approach to estimate methane emissions from coal mining in China[J]. Environmental Science & Technology,2017,51(21):12072−12080.
|
[12] |
于胜民,朱松丽,张俊龙. 中国井工煤矿开采过程的二氧化碳逃逸排放因子研究[J]. 中国能源,2018,40(5):10−16,33. doi: 10.3969/j.issn.1003-2355.2018.05.002
YU Shengmin,ZHU Songli,ZHANG Junlong. An approach to estimate the emission factor of fugitive CO2 emissions from underground coal mining activities in China[J]. Energy of China,2018,40(5):10−16,33. doi: 10.3969/j.issn.1003-2355.2018.05.002
|
[13] |
薛香玉,王长安,邓磊,等. 基于全生命周期的富油煤原位热解碳排放[J]. 煤炭学报,2023,48(4):1773−1781.
XUE Xiangyu,WANG Chang’an,DENG Lei,et al. Carbon emissions from in situ pyrolysis of tar-rich coal based on full life cycle analysis method[J]. Journal of China Coal Society,2023,48(4):1773−1781.
|
[14] |
刘韵,师华定,曾贤刚. 基于全生命周期评价的电力企业碳足迹评估:以山西省吕梁市某燃煤电厂为例[J]. 资源科学,2011,33(4):653−658.
LIU Yun,SHI Huading,ZENG Xiangang. A life-cycle carbon footprint assessment of electric power companies[J]. Resources Science,2011,33(4):653−658.
|
[15] |
YU S W,WEI Y M,GUO H X,et al. Carbon emission coefficient measurement of the coal-to-power energy chain in China[J]. Applied Energy,2014,114:290−300. doi: 10.1016/j.apenergy.2013.09.062
|
[16] |
崔亚蕾,孙仁金,赵亚南,等. 煤制天然气全生命周期碳排放核算研究[J]. 资源与产业,2018,20(6):52−60.
CUI Yalei,SUN Renjin,ZHAO Yanan,et al. Carbon emission accounting study on entire life circle of coal-made gas[J]. Resources & Industries,2018,20(6):52−60.
|
[17] |
许家林. 煤矿绿色开采20年研究及进展[J]. 煤炭科学技术,2020,48(9):1−15.
XU Jialin. Research and progress of coal mine green mining in 20 years[J]. Coal Science and Technology,2020,48(9):1−15.
|
[18] |
MORRELL S. Helping to reduce mining industry carbon emissions:A step-by-step guide to sizing and selection of energy efficient high pressure grinding rolls circuits[J]. Minerals Engineering,2022,179:107431. doi: 10.1016/j.mineng.2022.107431
|
[19] |
BRODNY J,TUTAK M. Challenges of the Polish coal mining industry on its way to innovative and sustainable development[J]. Journal of Cleaner Production,2022,375:134061. doi: 10.1016/j.jclepro.2022.134061
|
[20] |
ZHU X J,LI J X,CHENG H,et al. Assessing the impacts of ecological governance on carbon storage in an urban coal mining subsidence area[J]. Ecological Informatics,2022,72:101901. doi: 10.1016/j.ecoinf.2022.101901
|
[21] |
刘淑琴,刘欢,纪雨彤,等. 深部煤炭地下气化制氢碳排放核算及碳减排潜力分析[J]. 煤炭科学技术,2023,51(1):531−541.
LIU Shuqin,LIU Huan,JI Yutong,et al. Carbon emission accounting and carbon reduction analysis for deep coal underground gasification to hydrogen[J]. Coal Science and Technology,2023,51(1):531−541.
|
[22] |
MI Z F,ZHENG J L,MENG J,et al. China’s energy consumption in the new normal[J]. Earth’s Future,2018,6(7):1007−1016. doi: 10.1029/2018EF000840
|
[23] |
张优,程明今,刘雪薇. 中国煤炭铁路运输生命周期温室气体排放研究[J]. 资源科学,2021,43(3):601−611. doi: 10.18402/resci.2021.03.16
ZHANG You,CHENG Mingjin,LIU Xuewei. Life cycle greenhouse gas emissions from China’s coal railway transport[J]. Resources Science,2021,43(3):601−611. doi: 10.18402/resci.2021.03.16
|
[24] |
张振芳. 露天煤矿碳排放量核算及碳减排途径研究[D]. 徐州:中国矿业大学,2013.
ZHANG Zhenfang. Study on carbon emission accounting and carbon emission reduction ways in open-pit coal mines[D]. Xuzhou:China University of Mining and Technology,2013.
|
[25] |
曹原广,刘娜. 井工煤矿开采全生命周期碳排放特征研究[J]. 煤炭工程,2023,55(1):162−167.
CAO Yuanguang,LIU Na. Whole life cycle carbon emission characteristics of underground coal mining[J]. Coal Engineering,2023,55(1):162−167.
|
[26] |
王莉莉. 永煤集团煤炭矿区碳排放核算及减排对策研究[D]. 徐州:中国矿业大学,2015.
WANG Lili. Study on carbon emission accounting and emission reduction countermeasures in coal mining areas of Yongmei Group[D]. Xuzhou:China University of Mining and Technology,2015.
|
[27] |
刘静静,王传生. 煤炭企业的碳排放测算及评价[J]. 煤矿开采,2013(6):99−102,98.
LIU Jingjing,WANG Chuansheng. Carbon emission calculation and evaluation of coal enterprise[J]. Coal Mining Technology,2013(6):99−102,98.
|
[28] |
解北京,李晓旭,张景顺,等. 井工煤矿甲烷排放精准监测与核算[J]. 煤炭科学技术,2024,52(4):119−130. doi: 10.12438/cst.2023-1992
XIE Beijing,LI Xiaoxu,ZHANG Jingshun,et al. Accurate monitoring and accounting of methane emission in underground coal mine[J]. Coal Science and Technology,2024,52(4):119−130. doi: 10.12438/cst.2023-1992
|
[29] |
原白云,岳宗耀,高保彬,等. 井工煤矿全生命周期甲烷捕集核算及减排路径[J]. 矿业科学学报,2024,9(1):116−125.
YUAN Baiyun,YUE Zongyao,GAO Baobin,et al. Capture accounting and emission reduction of methane in the whole life cycle of underground coal mine[J]. Journal of Mining Science and Technology,2024,9(1):116−125.
|
[30] |
胡振琪,理源源,李根生,等. 碳中和目标下矿区土地复垦与生态修复的机遇与挑战[J]. 煤炭科学技术,2023,51(1):474−483.
HU Zhenqi,LI Yuanyuan,LI Gensheng,et al. Opportunities and challenges of land reclamation and ecological restoration in mining areas under carbon neutral target[J]. Coal Science and Technology,2023,51(1):474−483.
|
[31] |
李树志,李学良,尹大伟. 碳中和背景下煤炭矿山生态修复的几个基本问题[J]. 煤炭科学技术,2022,50(1):286−292. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201029
LI Shuzhi,LI Xueliang,YIN Dawei. Several basic issues of ecological restoration of coal mines under background of carbon neutrality[J]. Coal Science and Technology,2022,50(1):286−292. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201029
|
[32] |
刘祥宏,阎永军,刘伟,等. 碳中和战略下煤矿区生态碳汇体系构建及功能提升展望[J]. 环境科学,2022,43(4):2237‒2240,2242‒2250.
LIU Xianghong,YAN Yongjun,LIU Wei,et al. System construction and the function improvement of ecological carbon sink in coal mining areas under the carbon neutral strategy[J]. Environmental Science,2022,43(4):2237‒2240,2242‒2250.
|
[33] |
王金满,杨曼,刘彪,等. 绿色矿山建设碳源/汇与减排增汇研究进展[J]. 煤炭学报,2024,49(3):1597−1610.
WANG Jinman,YANG Man,LIU Biao,et al. Carbon sources/sinks and emission reduction and sink enhancement in green mining[J]. Journal of China Coal Society,2024,49(3):1597−1610.
|
[34] |
吴奎斌,吴昊,李瑞华. “双碳” 战略下煤矿减碳实施路径研究[J]. 中国煤炭,2024,50(5):13−17.
WU Kuibin,WU Hao,LI Ruihua. Research on the implementation path of carbon emission reduction in coal mine under the carbon peak and carbon neutrality strategies[J]. China Coal,2024,50(5):13−17.
|
[35] |
李新华. 神东矿区创建“零碳矿山” 路径研究与实践[J]. 中国煤炭,2022,48(11):88−94. doi: 10.3969/j.issn.1006-530X.2022.11.013
LI Xinhua. Research and practice of construction path of “zero-carbon mine” in Shendong mining area[J]. China Coal,2022,48(11):88−94. doi: 10.3969/j.issn.1006-530X.2022.11.013
|
[36] |
祖秉辉,李长松. “双碳” 背景下煤炭生产企业碳减排路径研究[J]. 矿业科学学报,2024,9(3):464−474.
ZU Binghui,LI Changsong. Research on carbon emission reduction pathways for coal production enterprises to meet the “dual carbon” targets[J]. Journal of Mining Science and Technology,2024,9(3):464−474.
|
1. |
范宝冬,马开德,崔卫秀,李致远. 采煤工作面刮板输送机智能控制系统研究. 工矿自动化. 2025(01): 52-60 .
![]() | |
2. |
霍炳杰,蔡树梅,杨刚. 大功率矿用减速器冷却系统设计与研究. 机械工程与自动化. 2025(01): 215-216+219 .
![]() | |
3. |
李灵锋,张洁,陈茁,查天任,尹瑞. 刮板输送机断链智能监测技术研究. 工矿自动化. 2025(03): 63-69+77 .
![]() | |
4. |
邢有望,李明忠,张金虎,闫汝瑜,刘江斌. 基于矩阵位移法的超长工作面顶板挠度分布研究. 煤炭科学技术. 2025(05): 39-51 .
![]() | |
5. |
孙松,马树伟,范士峰. 千万吨级超长综放工作面刮板输送系统选型及配套研究. 中国机械. 2024(18): 48-52 .
![]() | |
6. |
张鹏,王鹏,沈丰,刘宏飞,米佩,冯景浦. 刮板输送机发展现状与趋势. 煤矿机械. 2024(08): 68-70 .
![]() | |
7. |
杨鑫,苏乐,程永军,王波,赵愿,杨雄伟,赵成龙,曹现刚,赵江滨. 基于多种图结构信息融合的刮板输送机健康状态识别. 煤炭科学技术. 2024(08): 171-181 .
![]() | |
8. |
史晓恒. SGZ1000型高端智能刮板机技术分析与应用. 自动化应用. 2024(17): 126-128+131 .
![]() |