Advance Search
FAN Zhenli,CAO Lutong,ZHANG Fengda,et al. Optimal selection test of material ratio in the top of Ordovician limestone grouting reconstruction[J]. Coal Science and Technology,2025,53(5):277−290. DOI: 10.12438/cst.2024-0375
Citation: FAN Zhenli,CAO Lutong,ZHANG Fengda,et al. Optimal selection test of material ratio in the top of Ordovician limestone grouting reconstruction[J]. Coal Science and Technology,2025,53(5):277−290. DOI: 10.12438/cst.2024-0375

Optimal selection test of material ratio in the top of Ordovician limestone grouting reconstruction

More Information
  • Received Date: March 24, 2024
  • Available Online: May 09, 2025
  • It is an effective method to reduce the risk of floor water inrush by grouting reconstruction and sealing of water channel on top of Ordovician limestone before deep confined water mining in Huabei type coal mine in China. The basic properties of fly-ash cement materials with different ratios were tested using the orthogonal test method, in accordance with the requirements of deep medium to strong pervious limestone grouting project in Zhuozishan coal field. Subsequently, the influences of three factors, water-solid ratio, solid ratio and temperature, on six indexes of slurry density, viscosity, water extraction rate, setting rate, setting time and mechanical strength were analyzed. The results show that the ratio of water to solid has a relatively prominent effect on 6 indexes of slurry. The solid ratio has great influence on the viscosity, setting time and mechanical strength of the slurry. The effect of temperature on the performance of the slurry is relatively small. The pressure boosting process of ground grouting holes is divided into three stages: low-pressure filling, medium-pressure diffusion, and high-pressure fracture extension and reinforcement. The grouting material ratio varies across different stages of grouting. The comprehensive balance method yielded three material ratio schemes tailored for various grouting stages. The optimal grouting material ratio is applied for the grouting renovation of medium-strong pervious limestone. Engineering practice demonstrates that the slurry effectively diffuses and fills cracks in the formation, essentially intercepting the vertical water channel exposed at the top of the Ordovician limestone. It reduces the risk of water inflow on the working face and provides technical support for regional grouting treatment projects targeting the top of the Ordovician limestone.

  • [1]
    董书宁,刘其声,王皓,等. 煤层底板水害超前区域治理理论框架与关键技术[J]. 煤田地质与勘探,2023,51(1):185−195. doi: 10.12363/issn.1001-1986.22.10.0813

    DONG Shuning,LIU Qisheng,WANG Hao,et al. Theoretical framework and key technology of advance regional control of water inrush in coal seam floor[J]. Coal Geology & Exploration,2023,51(1):185−195. doi: 10.12363/issn.1001-1986.22.10.0813
    [2]
    樊振丽,张玉军,张风达,等. 承压水弱面突破与控水采煤[M]. 北京:科学出版社,2022:65-72.
    [3]
    虎维岳,赵春虎,吕汉江. 煤层底板水害区域注浆治理影响因素分析与高效布孔方式[J]. 煤田地质与勘探,2022,50(11):134−143. doi: 10.12363/issn.1001-1986.22.04.0279

    HU Weiyue,ZHAO Chunhu,LYU Hanjiang. Main influencing factors for regional pre-grouting technology of water hazard treatment in coal seam floor and efficient hole arrangement[J]. Coal Geology & Exploration,2022,50(11):134−143. doi: 10.12363/issn.1001-1986.22.04.0279
    [4]
    郑士田,马荷雯,姬亚东. 煤层底板水害区域超前治理技术优化及其应用[J]. 煤田地质与勘探,2021,49(5):167−173.

    ZHENG Shitian,MA Hewen,JI Yadong. Optimization of regional advanced coal floor water hazard prevention and control technology and its application[J]. Coal Geology & Exploration,2021,49(5):167−173.
    [5]
    尹希文,于秋鸽,甘志超,等. 高钙粉煤灰固碳降碱反应特性及煤矿井下规模化利用新途径[J]. 煤炭学报,2023,48(7):2717−2727.

    YIN Xiwen,YU Qiuge,GAN Zhichao,et al. Reaction characteristics of carbon fixation and alkali reduction in high calcium fly ash and new way of large-scale utilization in coal mine[J]. Journal of China Coal Society,2023,48(7):2717−2727.
    [6]
    许兴亮,刘为民,宋志坚,等. 单裂隙模型水泥浆液渗透扩散规律研究[J]. 煤炭工程,2018,50(12):103−106.

    XU Xingliang,LIU Weimin,SONG Zhijian,et al. Study on permeation and diffusion law of cement slurry in single fracture model[J]. Coal Engineering,2018,50(12):103−106.
    [7]
    李泽荃,杜萌洲,孟秀峰,等. 低成本注浆材料研制及其改性试验研究[J]. 煤炭工程,2018,50(11):108−111.

    LI Zequan,DU Mengzhou,MENG Xiufeng,et al. Development of low-cost grouting material and its modification test[J]. Coal Engineering,2018,50(11):108−111.
    [8]
    郭东明,谭霁爽,肖正星,等. 超细水泥浆液最优配比及注浆效果研究[J]. 河南理工大学学报(自然科学版),2017,36(5):1−8,34.

    GUO Dongming,TAN Jishuang,XIAO Zhengxing,et al. Study on the optimum proportion and grouting effect of superfine cement slurry[J]. Journal of Henan Polytechnic University (Natural Science),2017,36(5):1−8,34.
    [9]
    袁克阔,王义杰,徐拴海,等. 强触变性水泥基浆液研发及基本性能测定[J]. 煤炭科学技术,2018,46(7):75−80.

    YUAN Kekuo,WANG Yijie,XU Shuanhai,et al. Development of strong thixotropic cement slurry and determination of its basic properties[J]. Coal Science and Technology,2018,46(7):75−80.
    [10]
    王义杰,徐拴海,王刚,等. 触变性水泥浆液材料配比实验及其特性[J]. 煤矿安全,2019,50(3):35−37,43.

    WANG Yijie,XU Shuanhai,WANG Gang,et al. Matching experiment and its characteristics of thixotropic cement paste material[J]. Safety in Coal Mines,2019,50(3):35−37,43.
    [11]
    张毅,马有宝,左志昊,等. 低黏度超细水泥浆液单裂隙注浆试验效果分析[J]. 煤矿安全,2020,51(11):55−60.

    ZHANG Yi,MA Youbao,ZUO Zhihao,et al. Analysis on experimental results of single crack grouting for low viscosity ultra-fine cement slurry[J]. Safety in Coal Mines,2020,51(11):55−60.
    [12]
    吕文玉,李世杰,伍永平,等. “膏体-矸石” 复合承载结构的力学特性试验研究[J]. 采矿与岩层控制工程学报,2023,5(5):47−53.

    LYU Wenyu,LI Shijie,WU Yongping,et al. Experimental study on mechanical properties of “paste-gangue” composite bearing structure[J]. Journal of Mining and Strata Control Engineering,2023,5(5):47−53.
    [13]
    冯旭海. 深井高压地面预注浆水泥基浆材料改性研究[J]. 煤炭科学技术,2014,42(9):91−94.

    FENG Xuhai. Modification study on high pressure surface pre-grouting reinforced cement base material for deep mine shaft[J]. Coal Science and Technology,2014,42(9):91−94.
    [14]
    曹晓毅,王玉涛,刘小平,等. 陕北采煤沉陷区黄土基注浆材料性能试验及配比优选[J]. 煤田地质与勘探,2020,48(3):8−16. doi: 10.3969/j.issn.1001-1986.2020.03.002

    CAO Xiaoyi,WANG Yutao,LIU Xiaoping,et al. Performance test and proportioning optimization of loess-based grouting materials in coal mining subsidence area of northern Shaanxi[J]. Coal Geology & Exploration,2020,48(3):8−16. doi: 10.3969/j.issn.1001-1986.2020.03.002
    [15]
    王苏健,陈通,李涛,等. 承压水体上保水采煤注浆材料及技术[J]. 煤炭学报,2017,42(1):134−139.

    WANG Sujian,CHEN Tong,LI Tao,et al. Grouting material and technique in water protection mining above confined water[J]. Journal of China Coal Society,2017,42(1):134−139.
    [16]
    朱世彬,王晓东,武博强. 采煤沉陷区治理时高浓度浆液流变时效特性研究[J]. 煤炭科学技术,2021,49(10):122−127.

    ZHU Shibin,WANG Xiaodong,WU Boqiang. Study on time-dependent characteristics of rheological parameters on high-concentration slurry in treatment of coal mining subsidence area[J]. Coal Science and Technology,2021,49(10):122−127.
    [17]
    杨三萍,刘鹏珍,卢卫永. 不同黏结剂掺量条件下型煤试样三轴压缩试验研究[J]. 采矿与岩层控制工程学报,2023,5(2):46−54.

    YANG Sanping,LIU Pengzhen,LU Weiyong. Study on triaxial compression tests on briquette coal specimens with different binder contents[J]. Journal of Mining and Strata Control Engineering,2023,5(2):46−54.
    [18]
    苗贺朝,王海,王晓东,等. 粉煤灰基防渗注浆材料配比优选及其性能试验研究[J]. 煤炭科学技术,2022,50(9):230−239.

    MIAO Hechao,WANG Hai,WANG Xiaodong,et al. Study on ratio optimization and performance test of fly ash-based impermeable grouting materials[J]. Coal Science and Technology,2022,50(9):230−239.
    [19]
    王皓. 煤层底板注浆改造粉煤灰基材料性能实验研究[J]. 中国煤炭地质,2019,31(7):48−53. doi: 10.3969/j.issn.1674-1803.2019.07.10

    WANG Hao. Experimental study on fly-ash based material performance in coal floor grouting modification[J]. Coal Geology of China,2019,31(7):48−53. doi: 10.3969/j.issn.1674-1803.2019.07.10
    [20]
    徐斌,董书宁,徐路路,等. 水泥基注浆材料浆液稳定性及其析水规律试验[J]. 煤田地质与勘探,2019,47(5):24−31. doi: 10.3969/j.issn.1001-1986.2019.05.004

    XU Bin,DONG Shuning,XU Lulu,et al. Stability of cement-based grouting slurry and test of its bleeding law[J]. Coal Geology & Exploration,2019,47(5):24−31. doi: 10.3969/j.issn.1001-1986.2019.05.004
    [21]
    张润畦,徐斌,尹尚先,等. 水泥基注浆材料析水时变特性量化试验研究[J]. 煤田地质与勘探,2022,50(11):153−161. doi: 10.12363/issn.1001-1986.22.04.0224

    ZHANG Runqi,XU Bin,YIN Shangxian,et al. Quantitative experimental study on time-varying characteristics of bleeding of cement-based grouting materials[J]. Coal Geology & Exploration,2022,50(11):153−161. doi: 10.12363/issn.1001-1986.22.04.0224
    [22]
    顾明晖,黄金坤,庞建勇,等. 掺粉煤灰水泥基浆液性能关系模型研究[J]. 煤矿安全,2018,49(9):96−99,104.

    GU Minghui,HUANG Jinkun,PANG Jianyong,et al. Relational model for property of cement-based grout mixed with ultrafine fly ash[J]. Safety in Coal Mines,2018,49(9):96−99,104.
    [23]
    张曼曼,鲁海峰,年宾,等. 地面注浆加固顶板高掺量粉煤灰水泥浆液材料性能研究[J]. 煤矿安全,2020,51(6):60−65.

    ZHANG Manman,LU Haifeng,NIAN Bin,et al. Study on performance of cement slurry material with high fly ash content for roof reinforcement by grouting on the ground[J]. Safety in Coal Mines,2020,51(6):60−65.
    [24]
    刘慧妮,李训刚,李彦志,等. 煤矿巷道围岩注浆堵水新型水泥浆液性能研究[J]. 煤矿安全,2021,52(10):57−63.

    LIU Huini,LI Xungang,LI Yanzhi,et al. Research on performance of new type cement slurry for water shutoff in coal mine roadway[J]. Safety in Coal Mines,2021,52(10):57−63.
    [25]
    柳昭星,董书宁,王皓. 奥陶系灰岩顶部超前区域注浆浆液选配分析[J]. 地下空间与工程学报,2022,18(3):910−924. doi: 10.3969/j.issn.1673-0836.2022.3.dxkj202203024

    LIU Zhaoxing,DONG Shuning,WANG Hao. Analysis on grout selection and control of reformation grouting material in advance area of Ordovician limestone top[J]. Chinese Journal of Underground Space and Engineering,2022,18(3):910−924. doi: 10.3969/j.issn.1673-0836.2022.3.dxkj202203024
    [26]
    许延春,张二蒙,赵霖,等. 黏度对浆液在裂隙岩体中扩散与充填规律的影响[J]. 矿业科学学报,2021,6(1):71−81.

    XU Yanchun,ZHANG Ermeng,ZHAO Lin,et al. Study on the law of influence by slurry viscosity on the fractured aquifer grouting and diffusion[J]. Journal of Mining Science and Technology,2021,6(1):71−81.
    [27]
    张嘉凡,黄思聪,刘洋,等. 基于黏度时变性的裂隙动水注浆扩散规律分析[J]. 煤矿安全,2023,54(4):119−125.

    ZHANG Jiafan,HUANG Sicong,LIU Yang,et al. Analysis of diffusion law of dynamic water grouting in crack based on time-varying viscosity[J]. Safety in Coal Mines,2023,54(4):119−125.
    [28]
    张二蒙,沈星宇,苗葳,等. 奥灰顶部含水层注浆改造浆液扩散主要影响因素试验研究[J]. 煤炭学报,2021,46(11):3536−3549.

    ZHANG Ermeng,SHEN Xingyu,MIAO Wei,et al. Experimental study on the influence of grouting diffusion in fissure aquifer at the top Ordovician limestone[J]. Journal of China Coal Society,2021,46(11):3536−3549.
    [29]
    陈军涛,朱君,张呈祥,等. 不同渗透率灰岩裸孔注浆浆液扩散特性[J]. 西安科技大学学报,2023,43(4):667−674,742.

    CHEN Juntao,ZHU Jun,ZHANG Chengxiang,et al. Slurry diffusion characteristics of open hole grouting in limestones with different permeability[J]. Journal of Xi’an University of Science and Technology,2023,43(4):667−674,742.
    [30]
    郭艳,桂和荣,魏久传,等. 煤层底板区域注浆浆液扩散数值模拟及影响因素分析[J]. 煤田地质与勘探,2023,51(6):30−39. doi: 10.12363/issn.1001-1986.22.12.0963

    GUO Yan,GUI Herong,WEI Jiuchuan,et al. Numerical simulation of grout diffusion under coal seam floor and analysis of influencing factors[J]. Coal Geology & Exploration,2023,51(6):30−39. doi: 10.12363/issn.1001-1986.22.12.0963
    [31]
    许良发,姚维,黄腾龙,等. 杨家沟铝土矿充填材料配比优化研究[J]. 采矿与岩层控制工程学报,2022,4(2):92−99.

    XU Liangfa,YAO Wei,HUANG Tenglong,et al. Research on optimization of filling material proportion in Yangjiagou Bauxite Mine[J]. Journal of Mining and Strata Control Engineering,2022,4(2):92−99.
    [32]
    杨志斌. 桌子山煤田下组煤开采底板水害防治问题及对策探讨[J]. 煤矿开采,2015,20(4):133−135,45.

    YANG Zhibin. Prevention and countermeasures of floor water disaster in lower-group coalseam mining in Zhuozishan coal field[J]. Coal Mining Technology,2015,20(4):133−135,45.
    [33]
    王世东. 桌子山煤田奥灰水水化学特征及成因分析[J]. 煤炭科学技术,2022,50(8):180−188.

    WANG Shidong. Hydrogeochemical characteristics and cause analysis of Ordovician limestone groundwater in Zhuozishan Coalfield[J]. Coal Science and Technology,2022,50(8):180−188.
    [34]
    刘生优. 桌子山煤田棋盘井矿区奥灰水防治技术研究[J]. 神华科技,2011,9(2):17−19,23. doi: 10.3969/j.issn.1674-8492.2011.02.006

    LIU Shengyou. Study on control technology of Ordovician limestone water in Chizhijing mining area of Zhuozishan Coalfield[J]. Shenhua Technology,2011,9(2):17−19,23. doi: 10.3969/j.issn.1674-8492.2011.02.006
    [35]
    彭岩岩,周崇,程啸,等. 不同节理倾角下灰岩应变场演化及裂纹发展规律[J]. 采矿与岩层控制工程学报,2023,5(4):54−64

    PENG Yanyan,ZHOU Chong,CHENG Xiao,et al. Evolution of strain field and crack development of limestone under different joint inclination angles[J]. Journal of Mining and Strata Control Engineering,2023,5(4):54−64.
    [36]
    王世东,朱开鹏,汤红伟. 桌子山煤田奥陶纪灰岩水演化机理和循环特征[J]. 矿业安全与环保,2017,44(2):116−120. doi: 10.3969/j.issn.1008-4495.2017.02.027

    WANG Shidong,ZHU Kaipeng,TANG Hongwei. Evolution mechanism and circulation characteristics of ordovician limestone water in Zhuozishan Coalfield[J]. Mining Safety & Environmental Protection,2017,44(2):116−120. doi: 10.3969/j.issn.1008-4495.2017.02.027
    [37]
    李涛,常岩军,何凯. 基于正交试验的合成纤维及橡胶颗粒对湿喷混凝土力学性能的影响[J]. 采矿与岩层控制工程学报,2023,5(3):77−86.

    LI Tao,CHANG Yanjun,HE Kai. Effects of synthetic fibers and rubber particles on the mechanical properties of wet shotcrete based on orthogonal test[J]. Journal of Mining and Strate Control Engineering,2023,5(3):77−86.
    [38]
    许茜,王彦明,张雯超. 基于正交试验的充填体力学及微观特性研究[J]. 采矿与岩层控制工程学报,2022,4(6):90−98.

    XU Qian,WANG Yanming,ZHANG Wenchao. Mechanical performances and microscopic properties of cemented backfilling based on orthogonal experiment[J]. Journal of Mining and Strata Control Engineering,2022,4(6):90−98.
  • Cited by

    Periodical cited type(2)

    1. 张天军,田嘉伟,张磊,庞明坤,潘红宇,孟伟,贺绥男. 循环载荷下破碎煤体渗透率及迂曲度演化研究. 岩土力学. 2025(05): 1409-1418+1428 .
    2. 王磊,钟浩,范浩,邹鹏,商瑞豪,晋康. 循环荷载下含瓦斯煤力学特性及应变场演化规律研究. 煤炭科学技术. 2024(06): 90-101 . 本站查看

    Other cited types(0)

Catalog

    Article views (39) PDF downloads (18) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return