Loading [MathJax]/jax/output/SVG/jax.js
Advance Search
JU Kai,LIU Ying,LI Xin,et al. Optimization and mechanism of wet desulfurization with fly ash based on response surface[J]. Coal Science and Technology,2025,53(5):407−422. DOI: 10.12438/cst.2024-0351
Citation: JU Kai,LIU Ying,LI Xin,et al. Optimization and mechanism of wet desulfurization with fly ash based on response surface[J]. Coal Science and Technology,2025,53(5):407−422. DOI: 10.12438/cst.2024-0351

Optimization and mechanism of wet desulfurization with fly ash based on response surface

More Information
  • Received Date: March 20, 2024
  • Available Online: May 14, 2025
  • To investigate the desulfurization effect and mechanism of fly ash as a desulfurized, single factor experiment and response surface method were used to analyze the parameters of ash slurry solid-liquid mass ratio , SO2 volume fraction, and gas flow rate, and the reaction mechanism of fly ash wet desulfurization was investigated by X-ray fluorescence spectroscopy and scanning electron microscopy. The results show that within a certain range, increasing the solid-liquid ratio can increase the penetration time, the total adsorption capacity of SO2, and the adsorption capacity of SO2 per unit of fly ash slurry by increasing the pH. However, when the solid-liquid ratio exceeds 1∶1, the penetration time and adsorption capacity of SO2 will decrease. With the increase in SO2 volume fraction, the adsorption capacity of fly ash slurry to SO2 first increased and then decreased. When the SO2 volume fraction was 750×10−6, the maximum adsorption capacity was 64.35 mg, High SO2 volume fraction can significantly reduce the penetration time. With the increase of the gas flow rate, the penetration time, the total adsorption amount of SO2, and the adsorption amount of SO2 per unit mass of fly ash slurry decreased. The results of response surface analysis are shown by denoting the three factors of solid-liquid ratio, SO2 concentration and gas flow rate as A, B and C, respectively, and their interaction terms as AB, AC and BC, respectively: the primary and secondary order of the factors affecting the penetration time were C, B, A, BC, AC, and AB. The primary and secondary order of the factors affecting the total adsorption capacity of SO2 is B, A, C, AB, BC and AC. The primary and secondary order of factors affecting the adsorption of SO2 per unit mass of fly ash slurry is A, B, C, AB, AC and BC. The optimum desulphurisation process conditions are as follows: the solid/liquid ratio is 0.87, the SO2 volume fraction is 472×10−6 and the gas flow rate is 1 500 mL/min. XRF and SEM analysis of fly ash before and after desulfurization show that the sulfur oxide content of fly ash after desulfurization increases significantly, and the original surface plate Ca(OH)2 forms CaSO4·2H2O and CaO·Al2O3·3CaSO4·32H2O in bulk and rod. The possible desulfurization mechanism is that fly ash dissolves a large amount of Ca2+ and OH in water. SiO2 and Al2O3 react with Ca(OH)2 under strong alkaline conditions to form cementitious materials such as hydrated calcium silicate and hydrated calcium aluminate (C−S−H and C−A−H gels).When the sulfur-containing flue gas passes into the fly ash slurry, SO2 is transferred to the liquid phase, forming H+, HSO3 and SO23, and H+ reacts with the fly ash slurry, leaching Ca2+, Fe3+ and other elements contained in the fly ash and catalyzing oxidation of SO2 gas dissolved in the fly ash slurry to produce H2SO4 and CaSO4. After combining with water molecules in the slurry, CaSO4 was precipitated in the form of CaSO4·2H2O.

  • [1]
    黄根,王宾,徐宏祥,等. 粉煤灰综合利用与提质技术研究进展[J]. 矿产保护与利用,2019,39(4):32−37.

    HUANG Gen,WANG Bin,XU Hongxiang,et al. Research progress on comprehensive utilization and upgrading technologies of fly ash[J]. Conservation and Utilization of Mineral Resources,2019,39(4):32−37.
    [2]
    李博琦,谢贤,吕晋芳等. 粉煤灰资源化综合利用研究进展及展望[J]. 矿产保护与利用,2020,40(5):153−160.

    LI Boqi,XIE Xian,LV Jinfang,et al. Research progress and prospect of comprehensive utilization of fly ash resources[J]. Mineral protection and utilization,2020,40(5):153−160.
    [3]
    杜家芝,曹顺安. 湿法烟气脱硫技术的现状与进展[J]. 应用化工,2019,48(6):1495−1500. doi: 10.3969/j.issn.1671-3206.2019.06.054

    DU Jiazhi,CAO Shun’an. Research status and progress of wet flue gas desulfurization technology[J]. Applied Chemical Industry,2019,48(6):1495−1500. doi: 10.3969/j.issn.1671-3206.2019.06.054
    [4]
    于清航,徐振刚,王永刚等. 钙硫比对粉煤灰脱硫及煤粉燃烧特性的影响[J]. 煤炭科学技术,2018,46(12):223−229.

    YU Qinghang,XU Zhengang,WANG Yonggang,et al. Effect of calciumsulfur ratio on desulfurization of fly ash and combustion characteristics of pulverized coal[J]. Coal Science and Technology,2018,46(12):223−229.
    [5]
    杨志杰,孙俊民,刁美玲,等. 粉煤灰提铝后硅钙渣用于烟气脱硫反应机理探讨[J]. 轻金属,2018(9):17−20.

    YANG Zhijie,SUN Junmin,DIAO Meiling,et al. Discussion on reaction mechanism of flue gas desulfurization with silicate-calcium slag generated in process of extracting alumina from fly ash[J]. Light Metals,2018(9):17−20.
    [6]
    程水源,郑自保,郝瑞霞,等. 用电厂粉煤灰水脱除烟道气SO2的研究[J]. 河北科技大学学报,1999,20(1):63−65,75.

    CHENG Shuiyuan,ZHENG Zibao,HAO Ruixia,et al. Study on SO2 removal from flue gas with fly ash water from power plant[J]. Journal of Hebei University of Science and Technology,1999,20(1):63−65,75.
    [7]
    孙佩石,宁平,吴晓明. 粉煤灰净化低浓度SO2烟气试验研究[J]. 环境科学研究,1990,3(4):17−22. doi: 10.3321/j.issn:1001-6929.1990.04.006

    SUN Peishi,NING Ping,WU Xiaoming. Removal of sulfur dioxide in low concentration in waste gases by brown coal ash[J]. Research of Environmental Sciences,1990,3(4):17−22. doi: 10.3321/j.issn:1001-6929.1990.04.006
    [8]
    郭晨夫. 改性粉煤灰在脱硫废水处理工艺中的应用[J]. 现代工业经济和信息化,2022,12(4):146−147,152.

    GUO Chenfu. Application of modified fly ash in desulphurization wastewater treatment process[J]. Modern industrial economy and informatization,2022,12(4):146−147,152.
    [9]
    郭慧娴,李水娥,李慧赢. 改性粉煤灰对SO2的吸附试验研究[J]. 金属矿山,2018(6):187−191.

    GUO Huixian,LI Shuie,LI Huiying. Experimental study on adsorption of SO2 by modified fly ash[J]. Metal Mine,2018(6):187−191.
    [10]
    张腾飞,康泽双,刘中凯,等. 氧化铝厂赤泥制备脱硫剂及其脱硫性能研究[J]. 矿冶工程,2022,42(2):89−92. doi: 10.3969/j.issn.0253-6099.2022.02.022

    ZHANG Tengfei,KANG Zeshuang,LIU Zhongkai,et al. Preparation and performance of desulfurizer from red mud of alumina plant[J]. Mining and Metallurgical Engineering,2022,42(2):89−92. doi: 10.3969/j.issn.0253-6099.2022.02.022
    [11]
    姜恩柱,姚梅,耿娜,等. 微波焙烧磷矿湿法催化氧化脱硫反应条件优化[J]. 环境科学与技术,2022,45(3):141−150.

    JIANG Enzhu,YAO Mei,GENG Na,et al. Optimization of reaction conditions for wet catalytic oxidation desulfurization of phosphate rock calcined by microwave[J]. Environmental Science & Technology,2022,45(3):141−150.
    [12]
    CAI Z Y,DU B,DAI X D,et al. Coupling of alkaline and mechanical modified fly ash for HCl and SO2 removal in the municipal solid waste incineration plant[J]. Fuel,2023,346:128354. doi: 10.1016/j.fuel.2023.128354
    [13]
    QI L Q,WANG X,WANG W,et al. Mercury removal from coal combustion flue gas by pyrite-modified fly ash adsorbent[J]. Environmental Science and Pollution Research,2022,29(26):39228−39238. doi: 10.1007/s11356-022-18963-z
    [14]
    XU G L,CHEN F H,QIAN Y J,et al. Experimental investigation of removal of SO3 from flue gas with modified fly ash adsorbents[J]. ACS Omega,2023,8(19):16656−16672. doi: 10.1021/acsomega.2c07476
    [15]
    国家发展改革委, 环境保护部. 国家能源局关于印发《煤电节能减排升级与改造行动计划(2014—2020年)》的通知[J]. 中华人民共和国国务院公报,2015(5):65−71.
    [16]
    张东平,李乾军,刘献锋,等. 湿法烟气脱硫石膏-飞灰浆液的浸出与传质特性[J]. 动力工程学报,2011,31(10):761−767.

    ZHANG Dongping,LI Qianjun,LIU Xianfeng,et al. Mass transfer and leaching behavior of gypsum-fly ash slurry for wet flue gas desulphurization[J]. Journal of Chinese Society of Power Engineering,2011,31(10):761−767.
    [17]
    陆强,吴亚昌,徐明新,等. 粉煤灰活化及其制备多孔催化材料的研究进展[J]. 洁净煤技术,2021,27(3):1−12.

    LU Qiang,WU Yachang,XU Mingxin,et al. Research progress of fly ash activation and its application in the porous catalytic materials[J]. Clean Coal Technology,2021,27(3):1−12.
    [18]
    马豫,于丽丽,唐晓龙,等. 低浓度硫化氢液相催化氧化动力学实验研究[J]. 昆明理工大学学报(理工版),2009,34(3):79−82.

    MA Yu,YU Lili,TANG Xiaolong,et al. Study on reaction kinetics of liquid phase catalytic oxidation of low-concentration hydrogen sulfide[J]. Journal of Kunming University of Science and Technology (Science and Technology),2009,34(3):79−82.
    [19]
    李容,施丽丽,刘军,等. 新型改性粉煤灰对燃煤烟气中二氧化硫的吸附性能研究[J]. 当代化工,2022,51(10):2312−2315,2321.

    LI Rong,SHI Lili,LIU Jun,et al. Study on adsorption performance of new modified fly ash for sulfur dioxide in coal-fired flue gas[J]. Contemporary Chemical Industry,2022,51(10):2312−2315,2321.
    [20]
    李澜,俞树荣,陈学福,等. 改性负载MnO凹凸棒石的脱硫实验研究[J]. 矿物岩石,2011,31(4):19−24. doi: 10.3969/j.issn.1001-6872.2011.04.004

    LI Lan,YU Shurong,CHEN Xuefu,et al. Experimental study on the desulfurization of MnO modified attapulgite[J]. Journal of Mineralogy and Petrology,2011,31(4):19−24. doi: 10.3969/j.issn.1001-6872.2011.04.004
    [21]
    张兴惠,杨姣姣,都亚茹. 活性炭纤维氧化改性后的脱硫性能[J]. 化工进展,2019,38(11):5151−5157.

    ZHANG Xinghui,YANG Jiaojiao,DU Yaru. Desulfurization performance of activated carbon fiber after oxidation modification[J]. Chemical Industry and Engineering Progress,2019,38(11):5151−5157
    [22]
    马先林,付全军,罗蜀峰,等. 湿法磷酸脱硫工艺研究[J]. 磷肥与复肥,2015,30(4):7−9.

    MA Xianlin,FU Quanjun,LUO Shufeng,et al. Study on desulfurization process of wet-process phosphoric acid[J]. Phosphate & Compound Fertilizer,2015,30(4):7−9.
    [23]
    赵文滔,赵毅,李钊,等. 燃煤烟气三氧化硫协同脱除技术研究进展[J]. 热力发电,2021,50(4):7−13.

    ZHAO Wentao,ZHAO Yi,LI Zhao,et al. Research progress of cooperative removal of sulfur trioxide from coal-fired flue gas[J]. Thermal Power Generation,2021,50(4):7−13.
    [24]
    崔名双,周建明,张鑫,等. 半干法脱硫剂的性能及脱硫机理[J]. 煤炭转化,2019,42(3):55−61.

    CUI Mingshuang,ZHOU Jianming,ZHANG Xin,et al. Performance and desulfurization mechanism of semi-dry desulfurizer[J]. Coal Conversion,2019,42(3):55−61.
    [25]
    郭静静,郭世平,高波. 金属镁冶炼还原渣脱硫性能[J]. 有色金属(冶炼部分),2022(6):68−73. doi: 10.3969/j.issn.1007-7545.2022.06.012

    GUO Jingjing,GUO Shiping,GAO Bo. Desulfurization performance of magnesium reduction slag[J]. Nonferrous Metals (Extractive Metallurgy),2022(6):68−73. doi: 10.3969/j.issn.1007-7545.2022.06.012
    [26]
    ZHANG Q,WANG C R,JIANG L X,et al. Impact of dissolved oxygen on the microbial community structure of an intermittent biological aerated filter (IBAF) and the removal efficiency of gasification wastewater[J]. Bioresource Technology,2018,255:198−20 doi: 10.1016/j.biortech.2018.01.115
    [27]
    MIRZABE G H,KESHTKAR A R. Application of response surface methodology for thorium adsorption on PVA/Fe3O4/SiO2/APTES nanohybrid adsorbent[J]. Journal of Industrial and Engineering Chemistry,2015,26:277−285. doi: 10.1016/j.jiec.2014.11.040
    [28]
    马鹏传,李兴,温振宇等. 粉煤灰的活性激发与机理研究进展[J]. 无机盐工业,2021,53(10):28−35.

    MA Pengchuan,LI Xing,WEN Zhenyu,et al. Research progress on the activation and mechanism of fly ash[J]. Inorganic salt industry,2021,53(10):28−35.
    [29]
    BAO J C,LI K,NING P,et al. Study on the role of copper converter slag in simultaneously removing SO2 and NOx using KMnO4/copper converter slag slurry[J]. Journal of Environmental Sciences,2021,108:33−43. doi: 10.1016/j.jes.2021.02.004
    [30]
    孙文寿,蔡杰,陈侠. 煤浆催化氧化法烟气脱硫研究[J]. 环境科学与技术,2006,29(7):34−36,117. doi: 10.3969/j.issn.1003-6504.2006.07.014

    SUN Wenshou,CAI Jie,CHEN Xia. Flue gas desulfurization through catalytic oxidation of coal slurry[J]. Environmental Science & Technology,2006,29(7):34−36,117. doi: 10.3969/j.issn.1003-6504.2006.07.014
    [31]
    LEI D Y,GUO L P,SUN W,et al. Study on properties of untreated FGD gypsum-based high-strength building materials[J]. Construction and Building Materials,2017,153:765−773. doi: 10.1016/j.conbuildmat.2017.07.166
    [32]
    张源,万志军,熊路长,等. 煤−矸坑口电厂粉煤灰物化特性实验研究[J]. 硅酸盐通报,2019,38(1):224−230.

    ZHANG Yuan,WAN Zhijun,XIONG Luchang,et al. Experimental study on physical and chemical properties of fly ash in coal and gangue pithead power plant[J]. Bulletin of the Chinese Ceramic Society,2019,38(1):224−230.
    [33]
    宫少卿. 烟气脱硫技术探究[J]. 煤炭与化工,2018,41(5):144−148.

    GONG Shaoqing. Research on flue gas desulfurization technology[J]. Coal and Chemical Industry,2018,41(5):144−148.
    [34]
    梁成波,解田,杨林,等. 磷酸分解磷矿过程中金属元素的浸出规律研究[J]. 无机盐工业,2021,53(11):49−54.

    LIANG Chengbo,JIE Tian,YANG Lin,et al. Leaching law of metal elements in the process of phosphate rock decomposition by phosphoric acid[J]. Inorganic salt industry,2021,53(11):49−54.
    [35]
    陆青清. 脱硫石膏水泥稳定碎石减缩与增强行为机制[J]. 吉林大学学报(工学版),2021,51(1):252−258.

    LU Qingqing. Reduction and reinforcement mechanism of FGD g-ypsum cement stabilized macadam[J]. Journal of Jilin Universit-y Science(engineering edition),2021,51(1):252−258.
  • Related Articles

    [1]LIU Wenli, GENG Pengyue, ZHUO Qiming, MA Jinhu, LI Jia. Study on mechanical properties of solidified body of desulfurization wastewater[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(11): 230-235.
    [2]DONG Chuanlong, NING Zhangxuan. Mechanical response analysis of rock pillar under the impact loading[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(3): 102-110.
    [3]YU Qinghang, XU Zhengang, WANG Yonggang, Gong Yanyan. Effect of calcium-sulfur ratio on desulfurization performance of fly ash and combustion characteristics of pulverized coal[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (12).
    [4]Lou Jinfu. Study on deformation response features and instability mechanism of complex roof dynamic roadway[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (10).
    [5]Fang Huibin Zhao Jiantao Fang Yitian Dong Libo Huang Jejie, . Study on hot coal gas desulfurization technology of transport bed reactor[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (11).
    [6]ZHANG Lei ZHANG Nian SHA Xiang-ing LIU Qian LYU Bao-peng WANG Long-wei, . Nitric acid modification- activation influenced to desulfurization performances of lignite pyrolytic coke[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (4).
    [7]LIU Xiao-juan YIN Wei-feng ZHOU Xin-ping WEI Tao GAO Qing-yu WANG Shao-rong, . Study on Preparation and Desulfurization Performances of High Temperature Desulfurizer Applied to DC- SOFC[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (12).
    [8]Research on Factors Affected Flue Gas Desulfurization of Activated Coke[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (8).
    [9]Study Status and Development on Coal Microwave Desulfurization Technology[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (7).
    [10]Analysis on Mechanism of Drilling Induced Outburst and Prevention Measures[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (12).
  • Cited by

    Periodical cited type(4)

    1. 杨科,何淑欣,何祥,初茉,周伟,袁宁,陈登红,龚鹏,张元春. 煤电化基地大宗固废“三化”协同利用基础与技术. 煤炭科学技术. 2024(04): 69-82 . 本站查看
    2. 武振,商和福,宗宪生. 济三矿煤矸井下原位智能分选系统及技术研究. 煤炭科技. 2024(04): 186-191+196 .
    3. 于斌,邰阳,徐刚,李勇,李东印,王世博,匡铁军,孟二存. 千万吨级综放工作面智能化放煤理论及关键技术. 煤炭科学技术. 2024(09): 48-67 . 本站查看
    4. 王思云,任美嘉,周进生. 任家庄煤矿绿色充填示范工程经济社会效益评价研究. 能源科技. 2024(06): 27-30+35 .

    Other cited types(0)

Catalog

    Article views (43) PDF downloads (36) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return