Advance Search
WANG Gang,ZHENG Jinye,LIU Yixin,et al. Evolution law of true triaxial unloading mechanical properties of sandstone after high temperature[J]. Coal Science and Technology,2025,53(2):124−136. DOI: 10.12438/cst.2024-0340
Citation: WANG Gang,ZHENG Jinye,LIU Yixin,et al. Evolution law of true triaxial unloading mechanical properties of sandstone after high temperature[J]. Coal Science and Technology,2025,53(2):124−136. DOI: 10.12438/cst.2024-0340

Evolution law of true triaxial unloading mechanical properties of sandstone after high temperature

More Information
  • Received Date: March 18, 2024
  • Available Online: February 23, 2025
  • In the process of underground coal gasification and geothermal energy mining, the change of high temperature environment and stress field will affect the mechanical properties and strength characteristics of rocks, and the study of the change of the strength and mechanical properties of the rocks after high-temperature treatment under the action of different triaxial stresses has a very important role in the practical application of underground engineering. Based on the dynamic monitoring test system of hydraulic wetting range of coal rock under true triaxial stress, the loading and unloading tests of sandstone under different temperatures and different triaxial stress conditions were carried out. The deformation characteristics, strength characteristics and energy variation law of sandstone after high temperature were analyzed, and the effects of temperature and triaxial stress on the macroscopic strength of sandstone were studied. The failure of sandstone is dominated by brittle failure. The failure surfaces of sandstone at different temperatures are formed along the direction perpendicular to the minimum principal stress. The fracture angle increases with the increase of temperature and tends to be vertical. The bearing capacity of sandstone increases first and then decreases with the increase of temperature. The bearing capacity reaches its maximum at 600 ℃ and its minimum at 1 000 ℃. The influence of temperature on the elastic modulus, deformation modulus and other deformation parameters of sandstone is obvious, and the influence of triaxial stress on the deformation parameters is relatively small. The deformation parameters of sandstone are negatively correlated with temperature, and the deformation parameters of sandstone are positively correlated with triaxial stress. At 1 000 ℃, the elastic modulus, deformation modulus and peak strength of sandstone are the smallest, and the ultimate strain is the largest. During the loading and unloading process of sandstone, the change of energy density is roughly the same as that of peak strength, and the higher proportion of elastic energy to input energy has a greater impact on sandstone failure. Combined with the changes of mineral composition, pore fissure structure and porosity of sandstone, it is found that the macroscopic strength change of sandstone is consistent with the microscopic structure change.

  • [1]
    尹光志,李小双,赵洪宝. 高温后粗砂岩常规三轴压缩条件下力学特性试验研究[J]. 岩石力学与工程学报,2009,28(3):598−604. doi: 10.3321/j.issn:1000-6915.2009.03.020

    YIN Guangzhi,LI Xiaoshuang,ZHAO Hongbao. Experimental investigation on mechanical properties of coarse sandstone after high temperature under conventional triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(3):598−604. doi: 10.3321/j.issn:1000-6915.2009.03.020
    [2]
    OHMURA T,TSUBOI M,TOMIMURA T. Estimation of the mean thermal conductivity of anisotropic materials[J]. International Journal of Thermophysics,2002,23(3):843−853. doi: 10.1023/A:1015423708823
    [3]
    MOSTAFA M S,AFIFY N,GABER A,et al. Investigation of thermal properties of some basalt samples in Egypt[J]. Journal of Thermal Analysis and Calorimetry,2004,75(1):179−188. doi: 10.1023/B:JTAN.0000017340.19830.45
    [4]
    POPOV Y A,PRIBNOW D F C,SASS J H,et al. Characterization of rock thermal conductivity by high-resolution optical scanning[J]. Geothermics,1999,28(2):253−276. doi: 10.1016/S0375-6505(99)00007-3
    [5]
    贺玉龙,杨立中,杨明. 岩体温度场与应力场耦合作用的一种量化方法[J]. 西南交通大学学报,2002,37(1):10−13. doi: 10.3969/j.issn.0258-2724.2002.01.003

    HE Yulong,YANG Lizhong,YANG Ming. A quantitative method for the coupling effect of temperature fields and stress fields in rock mass[J]. Journal of Southwest Jiaotong University,2002,37(1):10−13. doi: 10.3969/j.issn.0258-2724.2002.01.003
    [6]
    哈秋舲. 岩石边坡工程与卸荷非线性岩石(体)力学[J]. 岩石力学与工程学报,1997,16(4):93−98.

    HA Qiuling. Rock slope engineering and unloading nonlinear rock mass mechanics[J]. Chinese Journal of Rock Mechanics and Engineering,1997,16(4):93−98.
    [7]
    谢和平,周宏伟,刘建锋,等. 不同开采条件下采动力学行为研究[J]. 煤炭学报,2011,36(7):1067−1074.

    XIE Heping,ZHOU Hongwei,LIU Jianfeng,et al. Mining-induced mechanical behavior in coal seams under different mining layouts[J]. Journal of China Coal Society,2011,36(7):1067−1074.
    [8]
    杜时贵,吕原君,罗战友,等. 岩体结构面抗剪强度尺寸效应联合试验系统及初级应用研究[J]. 岩石力学与工程学报,2021,40(7):1337−1349.

    DU Shigui,LYU Yuanjun,LUO Zhanyou,et al. Combined test system for size effect of rock joint shear strength and its primary application research[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(7):1337−1349.
    [9]
    许锡昌,刘泉声. 高温下花岗岩基本力学性质初步研究[J]. 岩土工程学报,2000,22(3):332−335. doi: 10.3321/j.issn:1000-4548.2000.03.014

    XU Xichang,LIU Quansheng. A preliminary study on basic mechanical properties for granite at high temperature[J]. Chinese Journal of Geotechnical Engineering,2000,22(3):332−335. doi: 10.3321/j.issn:1000-4548.2000.03.014
    [10]
    朱合华,闫治国,邓涛,等. 3种岩石高温后力学性质的试验研究[J]. 岩石力学与工程学报,2006,25(10):1945−1950. doi: 10.3321/j.issn:1000-6915.2006.10.001

    ZHU Hehua,YAN Zhiguo,DENG Tao,et al. Testing study on mechanical properties of tuff,granite and breccia after high temperatures[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(10):1945−1950. doi: 10.3321/j.issn:1000-6915.2006.10.001
    [11]
    杜守继,刘华,职洪涛,等. 高温后花岗岩力学性能的试验研究[J]. 岩石力学与工程学报,2004,23(14):2359−2364. doi: 10.3321/j.issn:1000-6915.2004.14.010

    DU Shouji,LIU Hua,ZHI Hongtao,et al. Testing study on mechanical properties of post-high-temperature granite[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(14):2359−2364. doi: 10.3321/j.issn:1000-6915.2004.14.010
    [12]
    万志军,赵阳升,董付科,等. 高温及三轴应力下花岗岩体力学特性的实验研究[J]. 岩石力学与工程学报,2008,27(1):72−77. doi: 10.3321/j.issn:1000-6915.2008.01.011

    WAN Zhijun,ZHAO Yangsheng,DONG Fuke,et al. Experimental study on mechanical characteristics of granite under high temperatures and triaxial stresses[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(1):72−77. doi: 10.3321/j.issn:1000-6915.2008.01.011
    [13]
    蔡燕燕,罗承浩,俞缙,等. 热损伤花岗岩三轴卸围压力学特性试验研究[J]. 岩土工程学报,2015,37(7):1173−1180. doi: 10.11779/CJGE201507002

    CAI Yanyan,LUO Chenghao,YU Jin,et al. Experimental study on mechanical properties of thermal-damage granite rock under triaxial unloading confining pressure[J]. Chinese Journal of Geotechnical Engineering,2015,37(7):1173−1180. doi: 10.11779/CJGE201507002
    [14]
    刘婕,张黎明,丛宇,等. 真三轴应力路径花岗岩卸荷破坏力学特性研究[J]. 岩土力学,2021,42(8):2069−2077.

    LIU Jie,ZHANG Liming,CONG Yu,et al. Research on the mechanical characteristics of granite failure process under true triaxial stress path[J]. Rock and Soil Mechanics,2021,42(8):2069−2077.
    [15]
    杨计先,罗明坤,张晓悟,等. 循环加卸载条件下花岗岩力学特性及疲劳损伤演化研究[J]. 采矿与岩层控制工程学报,2021,3(3):87−94.

    YANG Jixian,LUO Mingkun,ZHANG Xiaowu,et al. Mechanical properties and fatigue damage evolution of granite under cyclic loading and unloading conditions[J]. Journal of Mining and Strata Control Engineering,2021,3(3):87−94.
    [16]
    YANG S Q,LI Y,MA G W,et al. Experiment and numerical simulation study of dynamic mechanical behavior of granite specimen after high temperature treatment[J]. Computers and Geotechnics,2023,154:105111. doi: 10.1016/j.compgeo.2022.105111
    [17]
    MA X,DONG W B,HU D W,et al. Mechanical properties of granite at high temperature subjected to true triaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences,2023,164:105313. doi: 10.1016/j.ijrmms.2022.105313
    [18]
    MA X,WANG G L,HU D W,et al. Mechanical properties of granite under real-time high temperature and three-dimensional stress[J]. International Journal of Rock Mechanics and Mining Sciences,2020,136:104521. doi: 10.1016/j.ijrmms.2020.104521
    [19]
    张晓悟,徐金海,孙垒,等. 三轴循环加卸载条件下热损伤石灰岩力学特性演化规律[J]. 采矿与岩层控制工程学报,2022,4(4):87−98.

    ZHANG Xiaowu,XU Jinhai,SUN Lei,et al. Mechanical properties evolution of thermally damaged limestone under triaxial cyclic loading and unloading[J]. Journal of Mining and Strata Control Engineering,2022,4(4):87−98.
    [20]
    尹光志,马波,刘超,等. 真三轴应力条件下加卸荷速率对砂岩力学特性与能量特征的影响[J]. 煤炭学报,2019,44(2):454−462.

    YIN Guangzhi,MA Bo,LIU Chao,et al. Effect of loading and unloading rates on mechanical properties and energy characteristics of sandstone under true triaxial stress[J]. Journal of China Coal Society,2019,44(2):454−462.
    [21]
    苏承东,韦四江,杨玉顺,等. 高温后粗砂岩常规三轴压缩变形与强度特征分析[J]. 岩石力学与工程学报,2015,34(S1):2792−2800.

    SU Chengdong,WEI Sijiang,YANG Yushun,et al. Analysis of conventional triaxial compression deformation and strength characteristics of coarse sandstone after high temperature[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(S1):2792−2800.
    [22]
    李建林,陈星,党莉,等. 高温后砂岩三轴卸荷试验研究[J]. 岩石力学与工程学报,2011,30(8):1587−1595.

    LI Jianlin,CHEN Xing,DANG Li,et al. Triaxial unloading test of sandstone after high temperature[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(8):1587−1595.
    [23]
    张培森,赵成业,侯季群,等. 温度-应力-渗流耦合条件下红砂岩渗流特性试验研究[J]. 岩石力学与工程学报,2020,39(10):1957−1974.

    ZHANG Peisen,ZHAO Chengye,HOU Jiqun,et al. Experimental study on seepage characteristics of deep sandstone under temperature-stress-seepage coupling conditions[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(10):1957−1974.
    [24]
    张培森,侯季群,赵成业,等. 不同围压不同损伤程度红砂岩渗流特性试验研究[J]. 岩石力学与工程学报,2020,39(12):2405−2415.

    ZHANG Peisen,HOU Jiqun,ZHAO Chengye,et al. Experimental study on seepage characteristics of red sandstone with different confining pressures and different damage degrees[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(12):2405−2415.
    [25]
    张培森,许大强,张睿,等. 不同围压及循环载荷下砂岩的渗流、力学特性试验研究[J]. 岩石力学与工程学报,2022,41(12):2432−2450.

    ZHANG Peisen,XU Daqiang,ZHANG Rui,et al. Experimental study on seepage and mechanical properties of sandstone under different confining pressures and cyclic loads[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(12):2432−2450.
    [26]
    张培森,许大强,颜伟,等. 不同围压下峰后循环载荷对砂岩力学及渗流特性的影响研究[J]. 煤炭科学技术,2023,51(7):94−105.

    ZHANG Peisen,XU Daqiang,YAN Wei,et al. Effect of post-peak cyclic load on mechanics and seepage characteristics of sandstone under different confining pressures[J]. Coal Science and Technology,2023,51(7):94−105.
    [27]
    张培森,许大强,颜伟,等. 应力-渗流耦合作用下不同卸荷路径对砂岩损伤特性及能量演化规律的影响研究[J]. 岩土力学,2024,45(2):325−339.

    ZHANG Peisen,XU Daqiang,YAN Wei,et al. Influence of unloading paths on sandstone damage characteristics and energy evolution law under stress-seepage coupling[J]. Rock and Soil Mechanics,2024,45(2):325−339.
    [28]
    DING Q L,JU F,SONG S B,et al. An experimental study of fractured sandstone permeability after high-temperature treatment under different confining pressures[J]. Journal of Natural Gas Science and Engineering,2016,34:55−63. doi: 10.1016/j.jngse.2016.06.034
    [29]
    SUN Q,CHAO L,CAO L W,et al. Thermal properties of sandstone after treatment at high temperature[J]. International Journal of Rock Mechanics and Mining Sciences,2016,85:60−66. doi: 10.1016/j.ijrmms.2016.03.006
    [30]
    刘之喜,王伟,罗吉安,等. 岩石单轴压缩试验中能量演化分析方法[J]. 煤炭学报,2020,45(9):3131−3139.

    LIU Zhixi,WANG Wei,LUO Ji’an,et al. Method of energy evolution of rock under uniaxial compression test[J]. Journal of China Coal Society,2020,45(9):3131−3139.
    [31]
    刘之喜,孟祥瑞,赵光明,等. 真三轴压缩下砂岩的能量和损伤分析[J]. 岩石力学与工程学报,2023,42(2):327−341.

    LIU Zhixi,MENG Xiangrui,ZHAO Guangming,et al. Energy and damage analysis of sandstone under true triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(2):327−341.
    [32]
    许文松,赵光明,孟祥瑞,等. 真三轴加卸载岩体各向异性及能量演化机制[J]. 煤炭学报,2023,48(4):1502−1515.

    XU Wensong,ZHAO Guangming,MENG Xiangrui,et al. Anisotropy and energy evolution mechanism of rock mass under true triaxial loading-unloading[J]. Journal of China Coal Society,2023,48(4):1502−1515.
    [33]
    ALTINDAG R,GÜNEY A. ISRM Suggested Method for determining the Shore Hardness value for rock[J]. International Journal of Rock Mechanics and Mining Sciences,2006,43(1):19−22. doi: 10.1016/j.ijrmms.2005.04.004
    [34]
    程卫民,李怀兴,刘义鑫,等. 真三维应力下煤岩水力润湿范围动态监测试验系统研制[J]. 岩石力学与工程学报,2022,41(2):240−253.

    CHENG Weimin,LI Huaixing,LIU Yixin,et al. Development of dynamic monitoring test system for coal and rock hydraulic wetting range under true three-dimensional stresses[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(2):240−253.
    [35]
    尹光志,鲁俊,李星,等. 中间主应力对砂岩扩容及强度特性影响[J]. 煤炭学报,2017,42(4):879−885.

    YIN Guangzhi,LU Jun,LI Xing,et al. Influence of intermediate principal stress on dilation and strength characteristics of sandstone[J]. Journal of China Coal Society,2017,42(4):879−885.
    [36]
    肖繁. 损伤砂岩真三轴卸荷力学特性与破坏机制研究[D]. 重庆:重庆大学,2021.

    XIAO Fan. Study on true-triaxial unloading behaviors and failure mechanism of damaged sandstone [D]. Chongqing:Chongqing University,2021.
    [37]
    王刚,郑金叶,刘义鑫,等. 不同温度作用下砂岩微观结构变化与演化规律实验研究[J]. 岩石力学与工程学报,2024,43(3):600−610.

    WANG Gang,ZHENG Jinye,LIU Yixin,et al. Experimental study on the microstructure change and evolution law of sandstone under different temperatures[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(3):600−610.
    [38]
    中华人民共和国国家标准编写组. GB/T23561-2009 煤与岩石物理力学性质测定方法[S]. 北京:中国标准出版社,1988.
    [39]
    尤明庆. 岩石试样的杨氏模量与围压的关系[J]. 岩石力学与工程学报,2003,22(1):53−60. doi: 10.3321/j.issn:1000-6915.2003.01.010

    YOU Mingqing. Effect of confining pressure on the Young’s modulus of rock specimen[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(1):53−60. doi: 10.3321/j.issn:1000-6915.2003.01.010
    [40]
    WANG T N,ZHAI Y,GAO H,et al. A novel binary effective medium model to describe the prepeak stress-strain relationship of combined bodies of rock-like material and rock[J]. International Journal of Mining Science and Technology,2023,33(5):601−616. doi: 10.1016/j.ijmst.2022.11.007
    [41]
    张志镇,高峰. 单轴压缩下红砂岩能量演化试验研究[J]. 岩石力学与工程学报,2012,31(5):953−962. doi: 10.3969/j.issn.1000-6915.2012.05.012

    ZHANG Zhizhen,GAO Feng. Experimental research on energy evolution of red sandstone samples under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(5):953−962. doi: 10.3969/j.issn.1000-6915.2012.05.012
    [42]
    孟庆彬,王从凯,黄炳香,等. 三轴循环加卸载条件下岩石能量演化及分配规律[J]. 岩石力学与工程学报,2020,39(10):2047−2059.

    MENG Qingbin,WANG Congkai,HUANG Bingxiang,et al. Rock energy evolution and distribution law under triaxial cyclic loading and unloading conditions[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(10):2047−2059.
  • Cited by

    Periodical cited type(1)

    1. 迟国铭,陈苏社,王巍,王世东,朱志勇,焦轶恒,陈志超. 基于熵权可拓物元模型的矿区生态修复区域划分研究——以活鸡兔井为例. 河南理工大学学报(自然科学版). 2025(03): 119-129 .

    Other cited types(3)

Catalog

    Article views (69) PDF downloads (34) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return