Advance Search
ZHENG Xuezhao,HUANG Yuan,SUN Ziyu,et al. Experimental study on propagation attenuation characteristics of UWB electromagnetic wave in different coal and mixed media[J]. Coal Science and Technology,2025,53(S1):66−75. DOI: 10.12438/cst.2024-0339
Citation: ZHENG Xuezhao,HUANG Yuan,SUN Ziyu,et al. Experimental study on propagation attenuation characteristics of UWB electromagnetic wave in different coal and mixed media[J]. Coal Science and Technology,2025,53(S1):66−75. DOI: 10.12438/cst.2024-0339

Experimental study on propagation attenuation characteristics of UWB electromagnetic wave in different coal and mixed media

More Information
  • Received Date: March 18, 2024
  • Available Online: May 09, 2025
  • Personnel search and localization constitute the fundamental aspects of mine rescue operations. Ultra-Wide Band (UWB) radar technology possesses the capability to penetrate non-magnetic media, including masonry walls, coal, and rock, thereby enabling the detection and localization of individuals beyond physical obstructions. It is anticipated that UWB radar detection technology will address the challenges associated with personnel detection and localization within sheltered mine environments. In order to clarify the attenuation characteristics of UWB electromagnetic wave in coal and rock medium, based on electromagnetic wave propagation theory, the effective propagation distance and attenuation coefficient of electromagnetic wave in coal and rock medium are derived, and it is concluded that the attenuation coefficient of UWB electromagnetic wave in the environment of lossy medium is positively correlated with the relative dielectric constant and conductivity of medium. And utilize the RF signal attenuation system to carry out the propagation attenuation test of UWB electromagnetic wave in four thicknesses (30, 60, 90, 120 cm) of lignite, lean coal, sandstone, limestone and coal-rock mixing (mixing ratios of 3∶7 and 7∶3) media. The test results show that: ① UWB electromagnetic wave energy are reduced with the increase of the thickness of the coal rock medium, the electromagnetic wave energy amplitude waveform in the medium will produce a number of intervals close to the oscillation, and the reduction in the magnitude of the sequential decrease, indicating that the UWB electromagnetic wave energy attenuation is positively correlated with the thickness of the coal rock medium. ② The attenuation of electromagnetic wave energy in coal and rock stratified mixed media depends on the attenuation of coal and rock media and the ratio of coal and rock, the attenuation of electromagnetic wave in coal and rock mixed media is similar to the superposition of the attenuation of a single coal and rock media, which is positively correlated to the degree of electromagnetic wave attenuation penetrating the stratified mixed coal and rock media with the degree of attenuation of electromagnetic wave in a single medium of coal and rock, as well as the ratio of coal and rock. ③ The energy peak of UWB electromagnetic wave is shifted to the low-frequency region with the increase of coal rock thickness. Under different thicknesses, the UWB electromagnetic wave penetrating the coal-rock medium has energy peaks corresponding to the low-frequency frequency, in which the UWB electromagnetic wave penetrating the 120 cm lean coal and lean coal sandstone, lean coal limestone mixed medium has two peaks with the same peaks in the low-frequency region and at the center frequency, which indicates that there are multiple optimal detection frequencies in the coal-rock medium with a weak attenuation amplitude. The test results can provide a reference for the basic research related to UWB radar life information detection technology and equipment development and application for mine rescue.

  • [1]
    毛善君,崔建军,令狐建设,等. 透明化矿山管控平台的设计与关键技术[J]. 煤炭学报,2018,43(12):3539−3548.

    MAO Shanjun,CUI Jianjun,LINGHU Jianshe,et al. System design and key technology of transparent mine management and control platform[J]. Journal of China Coal Society,2018,43(12):3539−3548.
    [2]
    丁恩杰,俞啸,夏冰,等. 矿山信息化发展及以数字孪生为核心的智慧矿山关键技术[J]. 煤炭学报,2022,47(1):564−578.

    DING Enjie,YU Xiao,XIA Bing,et al. Development of mine informatization and key technologies of intelligent mines[J]. Journal of China Coal Society,2022,47(1):564−578.
    [3]
    刘明军,郝世俊,郑玉柱,等. 大直径救援井安全透巷技术研究[J]. 煤炭科学技术,2022,50(3):118−126.

    LIU Mingjun,HAO Shijun,ZHENG Yuzhu,et al. Study on safe tunneling penetration technology for large diameter rescue wells[J]. Coal Science and Technology,2022,50(3):118−126.
    [4]
    袁亮. 深部采动响应与灾害防控研究进展[J]. 煤炭学报,2021,46(3):716−725.

    YUAN Liang. Research progress of mining response and disaster prevention and control in deep coal mines[J]. Journal of China Coal Society,2021,46(3):716−725.
    [5]
    谢和平,高峰,鞠杨,等. 深部开采的定量界定与分析[J]. 煤炭学报,2015,40(1):1‒10.

    XIE Heping,GAO Feng,JU Yang,et al. Quantitative definition and investigation of deep mining[J]. Journal of China Coal Society,2015,40(1):1‒10.
    [6]
    武强,徐华,赵颖旺,等. 基于云平台的矿井水害智慧应急救援系统与应用[J]. 煤炭学报,2018,43(10):2661−2667.

    WU Qiang,XU Hua,ZHAO Yingwang,et al. Cloud-based smart emergency rescue system and its application in mine water disaster[J]. Journal of China Coal Society,2018,43(10):2661−2667.
    [7]
    何密,平钦文,戴然. 深度学习融合超宽带雷达图谱的跌倒检测研究[J]. 雷达学报,2023,12(2):343−355. doi: 10.12000/JR22169

    HE Mi,PING Qinwen,DAI Ran. Fall detection based on deep learning fusing ultrawideband radar spectrograms[J]. Journal of Radars,2023,12(2):343−355. doi: 10.12000/JR22169
    [8]
    赵文生. 综采工作面复杂环境下超宽带测距技术研究[J]. 煤炭科学技术,2019,47(12):145−149.

    ZHAO Wensheng. Research on UWB ranging technology under complex environment of fully-mechanized mining face[J]. Coal Science and Technology,2019,47(12):145−149.
    [9]
    许建军,易翔. 脉冲超宽带通信在干扰条件下的性能仿真分析[J]. 电子信息对抗技术,2018,33(4):63−66. doi: 10.3969/j.issn.1674-2230.2018.04.014

    XU Jianjun,YI Xiang. Simulation and analysis of ultra wideband impulse radio in the presence of jamming[J]. Electronic Information Warfare Technology,2018,33(4):63−66. doi: 10.3969/j.issn.1674-2230.2018.04.014
    [10]
    郑学召,丁文,蔡国斌,等. 面向钻孔救援的UWB雷达回波信息处理关键问题研究进展[J]. 煤矿安全,2023,54(10):219−225.

    ZHENG Xuezhao,DING Wen,CAI Guobin,et al. Research progress on key issues of UWB radar echo information processing for borehole rescue[J]. Safety in Coal Mines,2023,54(10):219−225.
    [11]
    郑学召,孙梓峪,郭军,等. 矿山钻孔救援多源信息探测技术研究与应用[J]. 煤田地质与勘探,2022,50(11):94−102. doi: 10.12363/issn.1001-1986.22.05.0421

    ZHENG Xuezhao,SUN Ziyu,GUO Jun,et al. Research and application of multi-source information detection technology for drilling rescue of mine[J]. Coal Geology & Exploration,2022,50(11):94−102. doi: 10.12363/issn.1001-1986.22.05.0421
    [12]
    张守祥,刘帅. 脉冲雷达透地探测煤岩实验研究[J]. 煤炭学报,2019,44(1):340−348.

    ZHANG Shouxiang,LIU Shuai. Experiments on ground-penetrating detecting coal-rock interface with radio pulse radar[J]. Journal of China Coal Society,2019,44(1):340−348.
    [13]
    金添,宋勇平. 超宽带雷达建筑物结构稀疏成像[J]. 雷达学报,2018,7(3):275−284.

    JIN Tian,SONG Yongping. Sparse imaging of building layouts in ultra-wideband radar[J]. Journal of Radars,2018,7(3):275−284.
    [14]
    ZHENG Z J,PAN J,NI Z K,et al. Recovering human pose and shape from through-the-wall radar images[J]. IEEE Transactions on Geoscience and Remote Sensing,2022,60:5112015.
    [15]
    王飞. 基于UWB技术的矿井精确定位系统[J]. 煤矿安全,2021,52(7):99−102.

    WANG Fei. Accurate positioning system for mine based on UWB technology[J]. Safety in Coal Mines,2021,52(7):99−102.
    [16]
    LIU X,YAN K,YANG G Y,et al. Improved vital signal extraction algorithm for through the wall radar[J]. Electronics Letters,2020,56(2):89−91. doi: 10.1049/el.2019.2853
    [17]
    QU X D,GAO W C,MENG H Y,et al. Indoor human behavior recognition method based on wavelet scattering network and conditional random field model[J]. IEEE Transactions on Geoscience and Remote Sensing,2023,61:5104815.
    [18]
    田宏亮,张阳,郝世俊,等. 矿山灾害应急救援通道快速安全构建技术与装备[J]. 煤炭科学技术,2019,47(5):29−33.

    TIAN Hongliang,ZHANG Yang,HAO Shijun,et al. Technology and equipment for rapid safety construction of emergency rescue channel after mine disaster[J]. Coal Science and Technology,2019,47(5):29−33.
    [19]
    陈承申,冯德山. 探地雷达有限元数值模拟及衰减特性探讨[J]. 物探化探计算技术,2014,36(2):152−157. doi: 10.3969/j.issn.1001-1749.2014.02.05

    CHEN Chengshen,FENG Deshan. Finite element method GPR forward simulation and attenuation characteristics[J]. Computing Techniques for Geophysical and Geochemical Exploration,2014,36(2):152−157. doi: 10.3969/j.issn.1001-1749.2014.02.05
    [20]
    RISSAFI Y,TALBI L,GHADDAR M. Experimental characterization of an UWB propagation channel in underground mines[J]. IEEE Transactions on Antennas and Propagation,2012,60(1):240−246. doi: 10.1109/TAP.2011.2167927
    [21]
    WANG Z K,ZHOU C,ZHAO S F,et al. Numerical study of global ELF electromagnetic wave propagation with respect to lithosphere–atmosphere–ionosphere coupling[J]. Remote Sensing,2021,13(20):4107. doi: 10.3390/rs13204107
    [22]
    唐彤彤,杨维,邵小桃. 不规则分层地层中电磁波透地传输的衰减特性[J]. 煤炭学报,2017,42(7):1912−1918.

    TANG Tongtong,YANG Wei,SHAO Xiaotao. Transmission attenuation characteristics of electromagnetic wave through irregular layered strata[J]. Journal of China Coal Society,2017,42(7):1912−1918.
    [23]
    陈清礼,肖希,蒋晓斌,等. 电磁波衰减系数特性分析[J]. 石油天然气学报,2014,36(8):43−45,51. doi: 10.3969/j.issn.1000-9752.2014.08.009

    CHEN Qingli,XIAO Xi,JIANG Xiaobin,et al. The attenuation characteristics of electromagnetic wave[J]. Journal of Oil and Gas Technology,2014,36(8):43−45,51. doi: 10.3969/j.issn.1000-9752.2014.08.009
    [24]
    谭文文. 低频电磁波在大地信道中的传输特性分析[D]. 青岛:山东科技大学,2012.

    TAN Wenwen. Study of the transmission properties trough the earth based on low frequency electromagnetic waves[D]. Qingdao:Shandong University of Science and Technology,2012.
    [25]
    XUE X S,CAO X G,ZHANG X H,et al. Electromagnetic wave attenuation mechanism and distribution strategy for coal mine rescue robot under the typical obstacle environment[J]. Radio Science,2020,55(3):e2019RS006803. doi: 10.1029/2019RS006803
    [26]
    YOO S,WANG D Y,SEOL D M,et al. A multiple target positioning and tracking system behind brick-concrete walls using multiple monostatic IR-UWB radars[J]. Sensors,2019,19(18):4033. doi: 10.3390/s19184033
    [27]
    贾雨龙,李凤霞,陶晋宜,等. 矿层无线透地系统中甚低频电磁波的传播特性[J]. 工矿自动化,2015,41(9):31−33.

    JIA Yulong,LI Fengxia,TAO Jinyi,et al. Transmission characteristics of very low frequency electromagnetic wave of mine-seam wireless through-the-earth communication system[J]. Industry and Mine Automation,2015,41(9):31−33.
    [28]
    张君. 超长波透地通信信道建模及弱信号检测算法研究[D]. 哈尔滨:哈尔滨工业大学,2012.

    ZHANG Jun. Research on modeling and weak signal detection algorithm of ultra-long wave through-the-ground communication channel[D]. Harbin:Harbin Institute of Technology,2012.
    [29]
    杨显清,赵家升,王园. 电磁场与电磁波[M]. 北京:国防工业出版社,2003.
    [30]
    曾昭珏. 正弦电磁波的相位不变性[J]. 大学物理,1987,6(2):20‒21.

    ZENG Zhaojue. Phase invariance of sinusoidal electromagnetic waves[J]. College Physics,1987,6(2):20‒21.
    [31]
    王颖,徐诚,张晓娟,等. 关于现代电磁场理论的探讨[J]. 电子与信息学报,2001,23(8):802−808.

    WANG Ying,XU Cheng,ZHANG Xiaojuan,et al. Discussion on modern electromagnetic theory[J]. Journal of Electronics and Information Technology,2001,23(8):802−808.
    [32]
    葛德彪,闫玉波. 电磁波时域有限差分方法[M]. 西安:西安电子科技大学出版社,2002.
    [33]
    司垒,李嘉豪,邢峰,等. 不同煤矸混合物的微波传播特性试验研究[J]. 煤炭科学技术,2023,51(5):219−231.

    SI Lei,LI Jiahao,XING Feng,et al. Experimental study on microwave propagation characteristics of different coal-gangue mixtures[J]. Coal Science and Technology,2023,51(5):219−231.
    [34]
    KONG Y G,LI C,CHEN Z P,et al. Recognition of blocking categories for UWB positioning in complex indoor environment[J]. Sensors,2020,20(15):4178. doi: 10.3390/s20154178
    [35]
    霍超,刘天绩,樊斌,等. 双碳背景下我国煤炭资源勘查开发布局研究[J]. 地质论评,2022,68(3):938−944.

    HUO Chao,LIU Tianji,FAN Bin,et al. Study on national coal resources exploration and exploitation layout under carbon neutrality and emission peak settings[J]. Geological Review,2022,68(3):938−944.
    [36]
    自然资源部. 中国矿产资源报告2022[J]. 自然资源情报,2023(1):2.

    Ministry of Natural Resources. China mineral resources report 2022[J]. Natural Resources Information,2023(1):2.
    [37]
    王宝元. 矿井生命信息探测超宽带雷达波衰减规律研究[D]. 西安:西安科技大学,2020.

    WANG Baoyuan. Study on attenuation law of ultra-wideband radar wave for mine life information detection[D]. Xi’an:Xi’an University of Science and Technology,2020.
    [38]
    杨孟达. 煤矿地质学[M]. 北京:煤炭工业出版社,2000.
    [39]
    郑学召,孙梓峪,王宝元,等. 超宽带雷达波在煤体中的传输衰减特性[J]. 西安科技大学学报,2021,41(5):765−771.

    ZHENG Xuezhao,SUN Ziyu,WANG Baoyuan,et al. Transmission attenuation characteristics of ultra-wideband radar waves in coal[J]. Journal of Xi’an University of Science and Technology,2021,41(5):765−771.
    [40]
    郑学召,赵炬,张铎,等. 不同变质程度煤介电常数特性[J]. 西安科技大学学报,2019,39(3):469−474.

    ZHENG Xuezhao,ZHAO Ju,ZHANG Duo,et al. Dielectric constant characteristics of different metamorphic coals[J]. Journal of Xi’an University of Science and Technology,2019,39(3):469−474.

Catalog

    Article views (31) PDF downloads (13) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return