Advance Search
WAN Jicheng,ZHANG Xuhui,YANG Wenjuan,et al. Combined localization method of roadheader based on vision and inertial navigation[J]. Coal Science and Technology,2025,53(6):456−467. DOI: 10.12438/cst.2024-0335
Citation: WAN Jicheng,ZHANG Xuhui,YANG Wenjuan,et al. Combined localization method of roadheader based on vision and inertial navigation[J]. Coal Science and Technology,2025,53(6):456−467. DOI: 10.12438/cst.2024-0335

Combined localization method of roadheader based on vision and inertial navigation

More Information
  • Received Date: March 18, 2024
  • Available Online: June 11, 2025
  • Aiming at the problem of low pose accuracy and poor measurement stability of roadheader caused by single position measurement method of roadheader in coal mine, a combined positioning method of roadheader based on machine vision and optical fiber inertial navigation is proposed. Taking the three-laser pointer fixed on the roof of the roadway as the characteristic target, a visual measurement system of the body pose of the roadheader based on the three-laser target is constructed. The airborne explosion-proof camera is used to collect the laser target, and the spot center position of the laser pointer is obtained by image processing. Combined with the visual measurement model of the body pose of the roadheader and the spatial coordinate transformation, the pose data of the roadheader are obtained. At the same time, the position and attitude information of the roadheader are obtained in real time by using the fiber optic inertial navigation installed on the roadheader fuselage. The Lagrange three-point interpolation method is used to register the visual pose data and the inertial pose data in time. After processing, the Kalman filter fusion algorithm is used to fuse the visual measurement data and the fiber optic inertial navigation data. The pose data after the fusion of the two is used to compensate and correct the cumulative error of the inertial navigation, and the output validity of the sensor of the measurement system is judged, which eliminates the cumulative error caused by the long-term integration operation of the inertial navigation and the short-term occlusion of the visual target and the influence of data loss on the fusion result, so as to obtain the real-time accurate pose data of the roadheader. The visual measurement platform of roadheader pose is built in the laboratory to evaluate the visual positioning method. Within the measurement distance of 60 m, the maximum position error is within 35 mm, and the maximum attitude angle error is within 0.5°. At the same time, the fusion positioning of vision and inertial navigation of roadheader was tested in the industrial field of underground coal mine. The results show that the fusion positioning method of vision and inertial navigation can overcome the influence of complex working conditions in underground mine and make up for the deficiency of single measurement method. The positioning error of roadheader body is within 30 mm, and the attitude angle error is within 0.5°, which meets the requirements of roadway construction accuracy.

  • [1]
    田伟琴,田原,贾曲,等. 悬臂式掘进机导航技术研究现状及发展趋势[J]. 煤炭科学技术,2022,50(3):267−274.

    TIAN Weiqin,TIAN Yuan,JIA Qu,et al. Research status and development trend of cantilever roadheader navigation technology[J]. Coal Science and Technology,2022,50(3):267−274.
    [2]
    王虹,王步康,张小峰,等. 煤矿智能快掘关键技术与工程实践[J]. 煤炭学报,2021,46(7):2068−2083.

    WANG Hong,WANG Bukang,ZHANG Xiaofeng,et al. Key technology and engineering practice of intelligent rapid heading in coal mine[J]. Journal of China Coal Society,2021,46(7):2068−2083.
    [3]
    王虹,李发泉,张小峰. 软弱围岩掘锚一体化快速掘进关键技术与工程实践[J]. 煤炭科学技术,2024,52(1):280−287.

    WANG Hong,LI Faquan,ZHANG Xiaofeng. Key technology research and engineering practice of speedy drivage with driving and bolting integration in soft surrounding rock[J]. Coal Science and Technology,2024,52(1):280−287.
    [4]
    SHEN Y,WANG P J,ZHENG W X,et al. Error compensation of strapdown inertial navigation system for the boom-type roadheader under complex vibration[J]. Axioms,2021,10(3):224. doi: 10.3390/axioms10030224
    [5]
    陶云飞,杨健健,李嘉赓,等. 基于惯性导航技术的掘进机位姿测量系统研究[J]. 煤炭技术,2017,36(1):235−237.

    TAO Yunfei,YANG Jianjian,LI Jiageng,et al. Research on position and orientation measurement system of heading machine based on inertial navigation technology[J]. Coal Technology,2017,36(1):235−237.
    [6]
    符世琛,成龙,陈慎金,等. 面向掘进机的超宽带位姿协同检测方法[J]. 煤炭学报,2018,43(10):2918−2925.

    FU Shichen,CHENG Long,CHEN Shenjin,et al. Ultra-wideband pose collaborative detection method of roadheader[J]. Journal of China Coal Society,2018,43(10):2918−2925.
    [7]
    FU S C,LI Y M,ZONG K,et al. Ultra-wideband pose detection method based on TDOA positioning model for boom-type roadheader[J]. AEU - International Journal of Electronics and Communications,2019,99:70−80. doi: 10.1016/j.aeue.2018.11.023
    [8]
    FU S C,LI Y M,ZHANG M J,et al. Ultra-wideband pose detection system for boom-type roadheader based on Caffery transform and Taylor series expansion[J]. Measurement Science and Technology,2018,29(1):015101. doi: 10.1088/1361-6501/aa91c0
    [9]
    马宏伟,杨金科,毛清华,等. 煤矿护盾式掘进机器人系统精确定位研究[J]. 工矿自动化,2022,48(3):63−70.

    MA Hongwei,YANG Jinke,MAO Qinghua,et al. Research on precise positioning of shield roadheader robot system in coal mine[J]. Industry and Mine Automation,2022,48(3):63−70.
    [10]
    LUO Y B,CHEN J X,XI W Z,et al. Analysis of tunnel displacement accuracy with total station[J]. Measurement,2016,83:29−37. doi: 10.1016/j.measurement.2016.01.025
    [11]
    贾文浩,陶云飞,张敏骏,等. 基于iGPS的煤巷狭长空间中掘进机绝对定位精度研究[J]. 仪器仪表学报,2016,37(8):1920−1926.

    JIA Wenhao,TAO Yunfei,ZHANG Minjun,et al. Research on absolute positioning accuracy of roadheader based on indoor global positioning system in narrow and long coal tunnel[J]. Chinese Journal of Scientific Instrument,2016,37(8):1920−1926.
    [12]
    陶云飞,李瑞,李嘉赓,等. iGPS的单站多点分时测量系统对掘进机偏向位移精度研究[J]. 煤炭技术,2017,36(2):246−247.

    TAO Yunfei,LI Rui,LI Jiageng,et al. Research on positioning accuracy of roadheader based on singlestation,multipoint and time-shared of iGPS measurement system[J]. Coal Technology,2017,36(2):246−247.
    [13]
    黄喆,燕庆德,邵震宇,等. 基于双相机标靶的直线顶管掘进机导向方法[J]. 激光与光电子学进展,2022,59(4):458−465.

    HUANG Zhe,YAN Qingde,SHAO Zhenyu,et al. Guiding method of linear pipe jacking machine based on dual camera target[J]. Laser & Optoelectronics Progress,2022,59(4):458−465.
    [14]
    杨文娟,张旭辉,张超,等. 基于三激光束标靶的煤矿井下长距离视觉定位方法[J]. 煤炭学报,2022,47(2):986−1001.

    YANG Wenjuan,ZHANG Xuhui,ZHANG Chao,et al. Long distance vision localization method based on triple laser beams target in coal mine[J]. Journal of China Coal Society,2022,47(2):986−1001.
    [15]
    张旭辉,沈奇峰,杨文娟,等. 基于三激光点标靶的掘进机机身视觉定位技术研究[J]. 电子测量与仪器学报,2022,36(6):178−186.

    ZHANG Xuhui,SHEN Qifeng,YANG Wenjuan,et al. Research on visual positioning technology of roadheader body based on three laser point target[J]. Journal of Electronic Measurement and Instrumentation,2022,36(6):178−186.
    [16]
    LI M G,ZHU H,YOU S Z,et al. UWB-based localization system aided with inertial sensor for underground coal mine applications[J]. IEEE Sensors Journal,2020,20(12):6652−6669. doi: 10.1109/JSEN.2020.2976097
    [17]
    张旭辉,刘博兴,张超,等. 掘进机全站仪与捷联惯导组合定位方法[J]. 工矿自动化,2020,46(9):1−7.

    ZHANG Xuhui,LIU Boxing,ZHANG Chao,et al. Roadheader positioning method combining total station and strapdown inertial navigation system[J]. Industry and Mine Automation,2020,46(9):1−7.
    [18]
    马宏伟,毛金根,毛清华,等. 基于惯导/全站仪组合的掘进机自主定位定向方法[J]. 煤炭科学技术,2022,50(8):189−195.

    MA Hongwei,MAO Jingen,MAO Qinghua,et al. Automatic positioning and orientation method of roadheader based on combination of ins and digital total station[J]. Coal Science and Technology,2022,50(8):189−195.
    [19]
    HAN S L,REN X Y,LU J Z,et al. An orientation navigation approach based on INS and odometer integration for underground unmanned excavating machine[J]. IEEE Transactions on Vehicular Technology,2020,69(10):10772−10786. doi: 10.1109/TVT.2020.3010979
    [20]
    王浩然,王宏伟,李正龙,等. 基于捷联惯导与差速里程计的掘进机组合定位方法[J]. 工矿自动化,2022,48(9):148−156.

    WANG Haoran,WANG Hongwei,LI Zhenglong,et al. Roadheader combined positioning method based on strapdown inertial navigation and differential odometer[J]. Journal of Mine Automation,2022,48(9):148−156.
    [21]
    刘送永,崔玉明,孟德远,等. 巷道掘进机多传感融合定位系统及试验研究[J]. 振动 测试与诊断,2023,43(3):476-484,618.

    LIU Songyong,CUI Yuming,MENG Deyuan,et al. Multi-sensor fusion positioning system and experimental study of roadheader[J]. Journal of Vibration,Measurement & Diagnosis,2023,43(3):476-484,618.
    [22]
    毛清华,周庆,安炎基,等. 惯导与视觉信息融合的掘进机精确定位方法[J]. 煤炭科学技术,2024,52(5):236−248.

    MAO Qinghua,ZHOU Qing,AN Yanji,et al. Precise positioning method of tunneling machine for inertial navigation and visual information fusion[J]. Coal Science and Technology,2024,52(5):236−248.
    [23]
    张超,张旭辉,杜昱阳,等. 基于双目视觉的悬臂式掘进机位姿测量技术研究[J]. 煤炭科学技术,2021,49(11):225−235.

    ZHANG Chao,ZHANG Xuhui,DU Yuyang,et al. Measuring technique of cantilever roadheader position based on binocular stereo vision[J]. Coal Science and Technology,2021,49(11):225−235.
    [24]
    黄东,杨凌辉,罗文,等. 基于视觉/惯导的掘进机实时位姿测量方法研究[J]. 激光技术,2017,41(1):19−23.

    HUANG Dong,YANG Linghui,LUO Wen,et al. Study on measurement method of realtime position and attitude of roadheader based on vision/inertial navigation system[J]. Laser Technology,2017,41(1):19−23.
    [25]
    钱锋,杨名宇,张晓沛. 基于序列图像提高光斑质心定位精度[J]. 光学 精密工程,2016,24(11):2880−2888. doi: 10.3788/OPE.20162411.2880

    QIAN Feng,YANG Mingyu,ZHANG Xiaopei. Improvement of localization accuracy of spot centroid based on sequential images[J]. Optics and Precision Engineering,2016,24(11):2880−2888. doi: 10.3788/OPE.20162411.2880
    [26]
    刘爱胤,熊根良,姚健康,等. 基于霍夫圆检测的标志物多图像特征定位方法[J]. 计算机仿真,2021,38(3):341−345. doi: 10.3969/j.issn.1006-9348.2021.03.069

    LIU Aiyin,XIONG Genliang,YAO Jiankang,et al. Marker localization method on multiple image features based on Hough circle detection[J]. Computer Simulation,2021,38(3):341−345. doi: 10.3969/j.issn.1006-9348.2021.03.069
    [27]
    段振云,王宁,赵文珍,等. 基于高斯积分曲面拟合的亚像素边缘定位算法[J]. 仪器仪表学报,2017,38(1):219−225. doi: 10.3969/j.issn.0254-3087.2017.01.029

    DUAN Zhenyun,WANG Ning,ZHAO Wenzhen,et al. Sub-pixel edge location algorithm based on Gauss integral curved surface fitting[J]. Chinese Journal of Scientific Instrument,2017,38(1):219−225. doi: 10.3969/j.issn.0254-3087.2017.01.029
    [28]
    王琪,汪立新,周小刚,等. 混合式惯导系统姿态四元数连续自标定模型[J]. 北京航空航天大学学报,2019,45(7):1424−1434.

    WANG Qi,WANG Lixin,ZHOU Xiaogang,et al. Attitude quaternion continuous self-calibration model of hybrid inertial navigation system[J]. Journal of Beijing University of Aeronautics and Astronautics,2019,45(7):1424−1434.
    [29]
    郭建刚,陈鹏,郑伟. 多表冗余惯导数据融合算法及在自对准中的应用[J]. 北京航空航天大学学报,2020,46(12):2211−2216.

    GUO Jiangang,CHEN Peng,ZHENG Wei. Data fusion algorithm of multi-sensor redundant inertial navigation and its application in self-alignment[J]. Journal of Beijing University of Aeronautics and Astronautics,2020,46(12):2211−2216.
    [30]
    乔文超,王红雨,王鸿东. 基于BP神经网络的无人机IMU多传感器冗余的补偿算法[J]. 电子测量与仪器学报,2020,34(12):19−28.

    QIAO Wenchao,WANG Hongyu,WANG Hongdong. Compensation algorithm for UAV IMU multi-sensor redundancy based on BP neural network[J]. Journal of Electronic Measurement and Instrumentation,2020,34(12):19−28.
    [31]
    中华人民共和国住房和城乡建设部. 煤矿井巷工程质量验收规范:GB 50213—2010[S]. 北京:中国计划出版社,2010.

Catalog

    Article views (56) PDF downloads (20) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return