Advance Search
XIAO Yuhang,ZHU Qingzhong,ZHAO Qun,et al. Research on adaptability of fracturing technologies for CBM horizontal wells based on the viewpoint of “unblocking and channeling”[J]. Coal Science and Technology,2025,53(5):243−254. DOI: 10.12438/cst.2024-0326
Citation: XIAO Yuhang,ZHU Qingzhong,ZHAO Qun,et al. Research on adaptability of fracturing technologies for CBM horizontal wells based on the viewpoint of “unblocking and channeling”[J]. Coal Science and Technology,2025,53(5):243−254. DOI: 10.12438/cst.2024-0326

Research on adaptability of fracturing technologies for CBM horizontal wells based on the viewpoint of “unblocking and channeling”

More Information
  • Received Date: March 15, 2024
  • Available Online: April 27, 2025
  • Horizontal well fracturing stimulation is currently the most core technical means to achieve efficient development of unconventional coalbed methane resources. Although good on-site results have been achieved, there are still some problems such as unclear the goal of fracturing stimulation, unclear the adaptability of the main horizontal well fracturing technology and lack of evaluation methods for fracturing effects. In order to further improve the production and development benefits of fractured horizontal wells, this article based on the viewpoint of “unblock and channeling”that has achieved significant results in the southern part of the Qinshui Basin and has been verified by practice, combined its requirements for fracturing on high-rank coal reservoir and the characteristics of the original natural pores and fractures in the high-rank coal reservoirs in the southern part of the Qinshui Basin, referred meanwhile to the evaluation experience of previous fracturing, selected seven key indicators: Types and quantity of fracturing operation curves for each section of the horizontal well, average operating pressure, instantaneous shut-in pressure, accident type and occurrence rate, Pressure at the moment of initial gas production, Current bottomhole flowing pressure and daily gas production (Production time is more than one year), and comprehensive average stable gas production, proposed an evaluation method for the fracturing effect. Furthermore, combined with on-site comparative experiments, a study on the adaptability of the main horizontal well fracturing technology will be conducted to determine the upper limit and shortcomings of the main fracturing technology’s stimulation capacity. The results show: With the increase of burial depth and geo-stress, the difficulty of coal reservoir stimulation has shifted from easy to filter out, prone to excessive opening of natural fractures near the wellbore, making it difficult to create dominant main fracturing fractures, to difficulty in gradually opening natural fractures around the dominant main fracturing fractures, insufficient opening of secondary fractures, and difficulty in transporting fracturing sand, making it easy for desanding and sand-block.Due to the excessive pressure loss along the wellbore, the bottom sealing drag fracturing technology is unable to meet the needs of “unblocking and channeling”fracturing stimulation at depths of more than 1 000 meters.The continuous tubing fracturing technology has the problem of insufficient carrying capacity for fracturing sand after at depths exceeding 1 200 meters.The bridge shooting combined fracturing technology can not only meet the needs of the “Unblocking and Channeling” fracturing stimulation of coal reservoirs with a depth of 1 250 meters, but also has the potential to further increase the scale of fracturing stimulation, which can meet the construction and implementation of the“unblocking and channeling”fracturing stimulation of coal reservoirs under deeper conditions. The research provides important basis and support for the rational selection and upgrading of fracturing technologies in the southern part of the Qinshui Basin and other coalbed methane blocks at home and abroad.

  • [1]
    姚红生,陈贞龙,何希鹏,等. 深部煤层气“有效支撑” 理念及创新实践:以鄂尔多斯盆地延川南煤层气田为例[J]. 天然气工业,2022,42(6):97−106. doi: 10.3787/j.issn.1000-0976.2022.06.009

    YAO Hongsheng,CHEN Zhenlong,HE Xipeng,et al. “Effective support” concept and innovative practice of deep CBM in South Yanchuan Gas Field of the Ordos Basin[J]. Natural Gas Industry,2022,42(6):97−106. doi: 10.3787/j.issn.1000-0976.2022.06.009
    [2]
    孙天竹,康永尚,张晓娜,等. 寿阳和柿庄区块煤储层压裂效果及其影响机理分析[J]. 煤炭学报,2019,44(10):3125−3134.

    SUN Tianzhu,KANG Yongshang,ZHANG Xiaona,et al. Evaluation of fracturing effect of coal reservoirs in Shouyang and Shizhuang CBM blocks and analysis of influencing mechanism[J]. Journal of China Coal Society,2019,44(10):3125−3134.
    [3]
    朱庆忠,左银卿,杨延辉. 如何破解我国煤层气开发的技术难题:以沁水盆地南部煤层气藏为例[J]. 天然气工业,2015,35(2):106−109. doi: 10.3787/j.issn.1000-0976.2015.02.017

    ZHU Qingzhong,ZUO Yinqing,YANG Yanhui. How to solve the technical problems in the CBM development:A case study of a CMB gas reservoir in the southern Qinshui Basin[J]. Natural Gas Industry,2015,35(2):106−109. doi: 10.3787/j.issn.1000-0976.2015.02.017
    [4]
    徐凤银,闫霞,李曙光,等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探,2023,51(1):115−130.

    XU Fengyin,YAN Xia,LI Shuguang,et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin[J]. Coal Geology & Exploration,2023,51(1):115−130.
    [5]
    朱庆忠,杨延辉,左银卿,等. 对于高煤阶煤层气资源科学开发的思考[J]. 天然气工业,2020,40(1):55−60.

    ZHU Qingzhong,YANG Yanhui,ZUO Yinqing,et al. On the scientific exploitation of high-rank CBM resources[J]. Natural Gas Industry,2020,40(1):55−60.
    [6]
    徐凤银,闫霞,林振盘,等. 我国煤层气高效开发关键技术研究进展与发展方向[J]. 煤田地质与勘探,2022,50(3):1−14.

    XU Fengyin,YAN Xia,LIN Zhenpan,et al. Research progress and development direction of key technologies for efficient coalbed methane development in China[J]. Coal Geology & Exploration,2022,50(3):1−14.
    [7]
    付玉通,马健强,李永臣,等. 延川南区块深层煤层气井产能主控因素[J]. 煤田地质与勘探,2017,45(5):48−53. doi: 10.3969/j.issn.1001-1986.2017.05.009

    FU Yutong,MA Jianqiang,LI Yongchen,et al. Research on key factors of CBM well productivity in deep strata in block of south Yanchuan[J]. Coal Geology & Exploration,2017,45(5):48−53. doi: 10.3969/j.issn.1001-1986.2017.05.009
    [8]
    申鹏磊,吕帅锋,李贵山,等. 深部煤层气水平井水力压裂技术:以沁水盆地长治北地区为例[J]. 煤炭学报,2021,46(8):2488−2500.

    SHEN Penglei,LYU Shuaifeng,LI Guishan,et al. Hydraulic fracturing technology for deep coalbed methane horizontal wells:A case study in North Changzhi area of Qinshui Basin[J]. Journal of China Coal Society,2021,46(8):2488−2500.
    [9]
    胡秋嘉,李梦溪,贾慧敏,等. 沁水盆地南部高煤阶煤层气水平井地质适应性探讨[J]. 煤炭学报,2019,44(4):1178−1187.

    HU Qiujia,LI Mengxi,JIA Huimin,et al. Discussion of the geological adaptability of coal-bed methane horizontal wells of high-rank coal formation in southern Qinshui Basin[J]. Journal of China Coal Society,2019,44(4):1178−1187.
    [10]
    朱庆忠. 高煤阶煤层气勘探开发新技术与实践[M]. 北京:石油工业出版社,2021:8−131.
    [11]
    肖宇航,朱庆忠,杨延辉,等. 煤储层能量及其对煤层气开发的影响:以郑庄区块为例[J]. 煤炭学报,2021,46(10):3286−3297.

    XIAO Yuhang,ZHU Qingzhong,YANG Yanhui,et al. Coal reservoir energy and its impact on CBM exploitation:Illustrated by the case of Zhengzhuang block[J]. Journal of China Coal Society,2021,46(10):3286−3297.
    [12]
    闵超,张馨慧,杨兆中,等. 基于CBFS-CV算法的煤层气井压裂效果主控因素识别[J]. 油气地质与采收率,2022,29(1):168−174.

    MIN Chao,ZHANG Xinhui,YANG Zhaozhong,et al. Identification of main controlling factors of fracturing performance in coalbed methane wells based on CBFS-CV algorithm[J]. Petroleum Geology and Recovery Efficiency,2022,29(1):168−174.
    [13]
    朱庆忠,李志军,李宗源,等. 复杂地质条件下煤层气高效开发实践与认识:以沁水盆地郑庄区块为例[J]. 煤田地质与勘探,2023,51(1):131−138.

    ZHU Qingzhong,LI Zhijun,LI Zongyuan,et al. Practice and cognition of efficient CBM development under complex geological conditions:A case study of Zhengzhuang Block,Qinshui Basin[J]. Coal Geology & Exploration,2023,51(1):131−138.
    [14]
    赵金洲,任岚,胡永全. 页岩储层压裂缝成网延伸的受控因素分析[J]. 西南石油大学学报(自然科学版),2013,35(1):1−9.

    ZHAO Jinzhou,REN Lan,HU Yongquan. Controlling factors of hydraulic fractures extending into network in shale formations[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2013,35(1):1−9.
    [15]
    蒋廷学,贾长贵,王海涛. 页岩气水平井体积压裂技术[M]. 北京:科学出版社,2017:3−65.
    [16]
    何骁,桑宇,郭建春,等. 页岩气水平井压裂技术[M]. 北京:石油工业出版社,2021:12−25.
    [17]
    赵金洲,任岚,沈骋,等. 页岩气储层缝网压裂理论与技术研究新进展[J]. 天然气工业,2018,38(3):1−14.

    ZHAO Jinzhou,REN Lan,SHEN Cheng,et al. Latest research progresses in network fracturing theories and technologies for shale gas reservoirs[J]. Natural Gas Industry,2018,38(3):1−14.
    [18]
    肖宇航,王生维,吕帅锋,等. 寺河矿区压裂煤储层中裂缝与流动通道模型[J]. 中国矿业大学学报,2018,47(6):1305−1312.

    XIAO Yuhang,WANG Shengwei,LYU Shuaifeng,et al. Fracture and flow channel model in fractured coal reservoir of Sihe mining area[J]. Journal of China University of Mining & Technology,2018,47(6):1305−1312.
    [19]
    王生维,段连秀,张明,等. 煤储层评价原理技术方法及应用[M]. 武汉:中国地质大学出版社,2012:7−54.
    [20]
    王生维,侯光久,张明,等. 晋城成庄矿煤层大裂隙系统研究[J]. 科学通报,2005,50(S1):38−44. doi: 10.1360/csb2005-50-S1-38

    WANG Shengwei,HOU Guangjiu,ZHANG Ming,et al. Analysis of the visible fracture system of coal seam in Chengzhuang coalmine of Jincheng,Shanxi province[J]. Chinese Science Bulletin,2005,50(S1):38−44. doi: 10.1360/csb2005-50-S1-38
    [21]
    张慧. 煤孔隙的成因类型及其研究[J]. 煤炭学报,2001,26(1):40−44.

    ZHANG Hui. Genetical type of proes in coal reservoir and its research significance[J]. Journal of China Coal Society,2001,26(1):40−44.
    [22]
    张慧,吴静,袁立颖,等. 煤中气孔的发育特征与影响因素浅析[J]. 煤田地质与勘探,2019,47(1):78−85,91.

    ZHANG Hui,WU Jing,YUAN Liying,et al. Analysis on the development characteristics and influencing factors of gas pores in coal[J]. Coal Geology & Exploration,2019,47(1):78−85,91.
    [23]
    朱庆忠. 我国高阶煤煤层气疏导式高效开发理论基础:以沁水盆地为例[J]. 煤田地质与勘探,2022,50(3):82−91. doi: 10.12363/issn.1001-1986.21.12.0845

    ZHU Qingzhong. Theoretical basis of dredging and efficient development of high-rank coalbed methane in China:A case study of the Qinshui Basin[J]. Coal Geology & Exploration,2022,50(3):82−91. doi: 10.12363/issn.1001-1986.21.12.0845
    [24]
    陈万钢,吴建光,王力,等. 北美页岩气压裂技术[M]. 北京:科学出版社,2018:17−83.
    [25]
    Michael J E,Martin T. 现代压裂技术—提高天然气产量的有效方法[M]. 卢拥军,邹洪岚,译. 北京:石油工业出版社,2007:112−203.
    [26]
    赵金洲,付永强,王振华,等. 页岩气水平井缝网压裂施工压力曲线的诊断识别方法[J]. 天然气工业,2022,42(2):11−19. doi: 10.3787/j.issn.1000-0976.2022.02.002

    ZHAO Jinzhou,FU Yongqiang,WANG Zhenhua,et al. Study on diagnosis model of shale gas fracture network fracturing operation pressure curves[J]. Natural Gas Industry,2022,42(2):11−19. doi: 10.3787/j.issn.1000-0976.2022.02.002
    [27]
    王馨玉. 海拉尔油田大规模压裂高停泵压力矿场诊断及其优化设计[D]. 北京:中国石油大学(北京),2019.

    WANG Xinyu. Hailaer oil field large-scale fracturing high pump pressure field diagnosis and its optimization design[D]. Beijing:China University of Petroleum (Beijing),2019.
    [28]
    李诗豪. 海拉尔油田大规模压裂高停泵压力特征形成机制研究[D]. 北京:中国石油大学(北京),2019.

    LI Shihao. Study on formation mechanism of pressure characteristics of large-scale fracturing high-stop pump in Hailaer oil field[D]. Beijing:China University of Petroleum (Beijing),2019.
    [29]
    WEIJERS L,WRIGHT C A,SUGIYAMA H,et al. Simultaneous propagation of multiple hydraulic fractures-evidence,impact and modeling implications[C]//Proceedings of International Oil and Gas Conference and Exhibition in China. Society of Petroleum Engineers,2000.
    [30]
    郭志企. 煤层气水平井分段多簇密集压裂技术与工艺优化:以大宁区块高阶低渗煤储层为例[D]. 徐州:中国矿业大学,2022.

    GUO Zhiqi. Sectional multi-cluster intensive fracturing and process optimization of CBM horizontal well: A case study of high-rank and low permeability coal reservoir in Daning, Shanxi, China[D]. Xuzhou:China University of Mining and Technology,2022.
    [31]
    蔡路,姚艳斌,张永平,等. 沁水盆地郑庄区块煤储层水力压裂曲线类型及其地质影响因素[J]. 石油学报,2015,36(S1):83−90.

    CAI Lu,YAO Yanbin,ZHANG Yongping,et al. Hydraulic fracturing curve types of coal reservoirs in Zhengzhuang block,Qinshui Basin and their geological influence factors[J]. Acta Petrolei Sinica,2015,36(S1):83−90.
    [32]
    张小东,胡修凤,杨延辉,等. 沁南煤层气井压裂施工曲线分析[J]. 河南理工大学学报(自然科学版),2017,36(3):21−27.

    ZHANG Xiaodong,HU Xiufeng,YANG Yanhui,et al. Analysis of hydraulic fracturing operation curves of CBM wells in Southern Qinshui Basin[J]. Journal of Henan Polytechnic University (Natural Science),2017,36(3):21−27.
    [33]
    张晓娜,康永尚,姜杉钰,等. 沁水盆地柿庄区块3号煤层压裂曲线类型及其成因机制[J]. 煤炭学报,2017,42(S2):441−451.

    ZHANG Xiaona,KANG Yongshang,JIANG Shanyu,et al. Fracturing curve types and their formation mechanism of coal seam 3 in Shizhuang block,Qinshui basin[J]. Journal of China Coal Society,2017,42(S2):441−451.
    [34]
    吴玲莉. 河流动力学[M]. 3版. 北京:人民交通出版社,2020:49−124.
    [35]
    赵金洲,彭瑀,李勇明,等. 高排量反常砂堵现象及对策分析[J]. 天然气工业,2013,33(4):56−60.

    ZHAO Jinzhou,PENG Yu,LI Yongming,et al. Abnormal sand plug phenomenon at a high injection rate and relevant solutions[J]. Natural Gas Industry,2013,33(4):56−60.
    [36]
    翟恒立. 页岩气压裂施工砂堵原因分析及对策[J]. 非常规油气,2015,2(1):66−70. doi: 10.3969/j.issn.2095-8471.2015.01.011

    ZHAI Hengli. Reason analysis and countermeasures of sand plug in shale gas fracturing[J]. Unconventional Oil & Gas,2015,2(1):66−70. doi: 10.3969/j.issn.2095-8471.2015.01.011

Catalog

    Article views (34) PDF downloads (26) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return