Advance Search
LEI Zhaoyuan,ZHAO Maoping,LI Tuanjie,et al. Strong mine pressure appearing mechanism and control at deep buried working face with large mining height[J]. Coal Science and Technology,2025,53(5):13−22. DOI: 10.12438/cst.2024-0324
Citation: LEI Zhaoyuan,ZHAO Maoping,LI Tuanjie,et al. Strong mine pressure appearing mechanism and control at deep buried working face with large mining height[J]. Coal Science and Technology,2025,53(5):13−22. DOI: 10.12438/cst.2024-0324

Strong mine pressure appearing mechanism and control at deep buried working face with large mining height

More Information
  • Received Date: March 14, 2024
  • Available Online: May 09, 2025
  • During the mining of the adjacent working face, the strong mine pressure caused by the hard thick roof has obvious zoning characteristics due to the mining of the previous deeply buried large mining height working face. The mechanism of the strong mine pressure at the adjacent working face is the basis for realizing safe and efficient mining. This paper takes the deeply buried large mining height working face at Huangling No.2 Mine as the background, and adopts the methods of geological investigation, theoretical analysis and numerical calculation to analyze the characteristics of the strong mine pressure, the breaking characteristics of the hard thick roof, and the evolution relationship between energy and stress, so as to reveal the occurrence mechanism of strong mine pressure at the adjacent working face of the deep-buried large mining height, and specifies the prevention and control direction of the strong mine pressure. The results show that the number and energy of microseismic events generated by the hard thick roof accounted for 52.12% and 69.4% of the total number of events and total energy, respectively. Zoning display feature was formed in which the value of the energy release on the proximal side was large, and the interior of the roof plate on the solid side was basically intact along the tendency of the working face. The hard thick roof plate constraint boundary conditions of “two solid support, one simple and one free” breaks at the working face tends to be about 108m from the coal pillar of the adjacent section of the breakage. The energy and stress of the hard thick roof under the mining disturbance of 21422 working face form a reduced distribution characteristics from the airside to the solid side. The zonality of the stress and energy distribution is consistently related to the asymmetric breaking of the roof, as derived from the concentration difference coefficient. The hard thick roof has a high degree of release in the 110m range on the air side, and is in a energy storage stage in the range of about 70m from the coal pillar on the boundary of the solid side. According to the results, the strategy of weakening the stress concentration of the roof plate on the airside and blocking the transmission of stress on the solid side has been formed, which provides a reference basis for the effective prevention and control of the strong mine pressure in the deeply buried large mining height working face.

  • [1]
    蔡美峰. 岩石力学与工程[M]. 北京:科学出版社,2002.
    [2]
    钱鸣高,许家林. 煤炭开采与岩层运动[J]. 煤炭学报,2019,44(4):973−984.

    QIAN Minggao,XU Jialin. Behaviors of strata movement in coal mining[J]. Journal of China Coal Society,2019,44(4):973−984.
    [3]
    JU J F,XU J L. Structural characteristics of key strata and strata behaviour of a fully mechanized longwall face with 7.0m height chocks[J]. International Journal of Rock Mechanics and Mining Sciences,2013,58:46−54. doi: 10.1016/j.ijrmms.2012.09.006
    [4]
    王普,周海勇,万广绪,等. 硬厚顶板下邻断层工作面不同推采方向应力特征分析[J]. 采矿与岩层控制工程学报,2021,3(4):63−71.

    WANG Pu,ZHOU Haiyong,WAN Guangxu,et al. Stress characteristics of different mining directions adjacented fault under hard thick roof[J]. Journal of Mining and Strata Control Engineering,2021,3(4):63−71.
    [5]
    卜滕滕. 深井厚煤层综放工作面顶板运动与沿空巷道围岩变形动态响应关系[J]. 采矿与岩层控制工程学报,2021,3(2):23−31.

    BU Tengteng. Dynamic response relationship between roof movement and deformation of roadway in fully mechanized caving face of deep and thick coal seam[J]. Journal of Mining and Strata Control Engineering,2021,3(2):23−31.
    [6]
    高学鹏,于凤海,任强,等. 西部鄂尔多斯矿区强矿压显现及顶板运动规律[J]. 金属矿山,2020(6):191−197.

    GAO Xuepeng,YU Fenghai,REN Qiang,et al. Strata movement law and strong ground behavior in western Ordos Coalfield[J]. Metal Mine,2020(6):191−197.
    [7]
    王金东. 综放开采覆岩高位结构稳定性及强矿压形成机理研究[D]. 西安:西安科技大学,2015.

    WANG Jindong. Study on structural stability of overlying strata and formation mechanism of strong ground pressure in fully mechanized top-coal caving mining[D]. Xi’an:Xi’an University of Science and Technology,2015.
    [8]
    张培鹏,蒋力帅,刘绪峰,等. 高位硬厚岩层采动覆岩结构演化特征及致灾规律[J]. 采矿与安全工程学报,2017,34(5):852−860.

    ZHANG Peipeng,JIANG Lishuai,LIU Xufeng,et al. Mining-induced overlying strata structure evolution characteristics and disaster-triggering under high level hard thick strata[J]. Journal of Mining & Safety Engineering,2017,34(5):852−860.
    [9]
    夏彬伟,李晓龙,卢义玉,等. 大同矿区坚硬顶板破断步距及变形规律研究[J]. 采矿与安全工程学报,2016,33(6):1038−1044.

    XIA Binwei,LI Xiaolong,LU Yiyu,et al. Study on the breaking span and deformation of hard roof in Datong mining area[J]. Journal of Mining & Safety Engineering,2016,33(6):1038−1044.
    [10]
    王拓,常聚才,张兵,等. 综采面多层坚硬顶板破断特征及其安全控制研究[J]. 地下空间与工程学报,2017,13(S1):339−343.

    WANG Tuo,CHANG Jucai,ZHANG Bing,et al. Study on fracture characteristics and safety control of multi-layer hard roof in fully mechanized mining face[J]. Chinese Journal of Underground Space and Engineering,2017,13(S1):339−343.
    [11]
    霍丙杰,于斌,张宏伟,等. 多层坚硬顶板采场覆岩“拱壳” 大结构形成机理研究[J]. 煤炭科学技术,2016,44(11):18−23.

    HUO Bingjie,YU Bin,ZHANG Hongwei,et al. Study on formation mechanism of arch shell large structure of overburden in coal mining face with multi layer hard roof[J]. Coal Science and Technology,2016,44(11):18−23.
    [12]
    于斌,刘长友,杨敬轩,等. 坚硬厚层顶板的破断失稳及其控制研究[J]. 中国矿业大学学报,2013,42(3):342−348.

    YU Bin,LIU Changyou,YANG Jingxuan,et al. Research on the fracture instability and its control technique of hard and thick roof[J]. Journal of China University of Mining & Technology,2013,42(3):342−348.
    [13]
    YU B. Behaviors of overlying strata in extra-thick coal seams using top-coal caving method[J]. Journal of Rock Mechanics and Geotechnical Engineering,2016,8(2):238−247. doi: 10.1016/j.jrmge.2015.11.006
    [14]
    曹胜根,姜海军,王福海,等. 采场上覆坚硬岩层破断的数值模拟研究[J]. 采矿与安全工程学报,2013,30(2):205−210.

    CAO Shenggen,JIANG Haijun,WANG Fuhai,et al. Numerical simulation of overlying hard strata rupture in a coal face[J]. Journal of Mining and Strata Control Engineering,2013,30(2):205−210.
    [15]
    浦海,黄耀光,陈荣华. 采场顶板X-O型断裂形态力学分析[J]. 中国矿业大学学报,2011,40(6):835−840.

    PU Hai,HUANG Yaoguang,CHEN Ronghua. Mechanical analysis for X-O type fracture morphology of stope roof[J]. Journal of China University of Mining & Technology,2011,40(6):835−840.
    [16]
    朱卫兵,于斌,鞠金峰,等. 采场顶板关键层“横U-Y” 型周期破断特征的试验研究[J]. 煤炭科学技术,2020,48(2):36−43.

    ZHU Weibing,YU Bin,JU Jinfeng,et al. Experimental study on “horizontal U-Y” periodical breakage characteristics of key strata in stope roof[J]. Coal Science and Technology,2020,48(2):36−43.
    [17]
    于斌,高瑞,孟祥斌,等. 大空间远近场结构失稳矿压作用与控制技术[J]. 岩石力学与工程学报,2018,37(5):1134−1145.

    YU Bin,GAO Rui,MENG Xiangbin,et al. Near-far strata structure instability and associate strata behaviors in large space and corresponding control technology[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(5):1134−1145.
    [18]
    王树仁,贾会会,武崇福. 动荷载作用下采空区顶板安全厚度确定方法及其工程应用[J]. 煤炭学报,2010,35(8):1263−1268.

    WANG Shuren,JIA Huihui,WU Chongfu. Determination method of roof safety thickness in the mined-out regions under dynamic loading and its application[J]. Journal of China Coal Society,2010,35(8):1263−1268.
    [19]
    徐刚,于健浩,范志忠,等. 国内典型顶板条件工作面矿压显现规律[J]. 煤炭学报,2021,46(S1):25−37.

    XU Gang,YU Jianhao,FAN Zhizhong,et al. Characteristics of strata pressure behavior of working face under typicalroof conditions in China[J]. Journal of China Coal Society,2021,46(S1):25−37.
    [20]
    黄耀光,浦海. 不同边界下的坚硬顶板极限承载分析及破断距确定[J]. 煤矿开采,2012(2):12−16. doi: 10.3969/j.issn.1006-6225.2012.02.004

    HUANG Yaoguang,PU Hai. Analysis of roof limit load and broken pace under different boundary conditions[J]. Coal Mining Technology,2012(2):12−16. doi: 10.3969/j.issn.1006-6225.2012.02.004
    [21]
    李铁,张山林,李守峰,等. 华亭煤矿强矿压力学机制与防治对策[J]. 煤炭学报,2016,41(5):1093−1098.

    LI Tie,ZHANG Shanlin,LI Shoufeng,et al. Mechanism and control measures of rockburst in Huating coal mine[J]. Journal of China Coal Society,2016,41(5):1093−1098.
    [22]
    崔峰,冯港归,来兴平,等. 巨厚强冲击倾向性煤层高强度开采特征与高强度开采定义[J]. 煤炭学报,2023,48(2):649−665.

    CUI Feng,FENG Ganggui,LAI Xingping,et al. Characteristics and definition of high-intensity mining in extremely thick coal seam with strong impact tendency[J]. Journal of China Coal Society,2023,48(2):649−665.
    [23]
    钱鸣高,石平五,许家林. 矿山压力与岩层控制[M]. 2版. 徐州:中国矿业大学出版社,2010.
    [24]
    许家林,鞠金峰. 特大采高综采面关键层结构形态及其对矿压显现的影响[J]. 岩石力学与工程学报,2011,30(8):1547−1556.

    XU Jialin,JU Jinfeng. Structural morphology of key stratum and its influence on strata behaviors in fully-mechanized face with super-large mining height[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(8):1547−1556.
    [25]
    雷照源,李团结,崔峰,等. 深部厚煤层动静载荷下区段煤柱损伤演化分析[J]. 西安科技大学学报,2022,42(1):91−98.

    LEI Zhaoyuan,LI Tuanjie,CUI Feng,et al. Damage evolution analysis of section coal pillar under dynamic and static load in deep thick coal seam[J]. Journal of Xi’an University of Science and Technology,2022,42(1):91−98.
  • Cited by

    Periodical cited type(39)

    1. 李黎黎,李合菊. 基于大数据的采煤机运行状态监测与评估. 煤矿机械. 2025(03): 208-211 .
    2. 王剑,张善兵,樊君. 基于地质保障+5G的智能透明开采技术研究. 能源科技. 2025(01): 10-13 .
    3. 王忠宾,李福涛,司垒,魏东,戴嘉良,张森. 采煤机自适应截割技术研究进展及发展趋势. 煤炭科学技术. 2025(01): 296-311 . 本站查看
    4. 张楷鑫,胡小刚,杨文宇,刘朝,王嘉宇,上官星驰. 基于小波阈值改进EEMD的微震信号联合去噪方法及应用. 能源与环保. 2025(02): 95-100 .
    5. 张村,贾胜,华埜,宋启. 矿山三维地质建模研究进展:原理、方法与应用. 煤炭科学技术. 2025(02): 222-238 . 本站查看
    6. 付翔,闫明. 煤炭开采技术的人工智能应用. 绿色矿山. 2025(01): 63-72 .
    7. 曹哲哲. 黄陵二号煤矿多维度地质模型大数据融合精准开采. 陕西煤炭. 2024(02): 126-129+141 .
    8. 齐爱玲,王雨,马宏伟. 基于改进门控循环神经网络的采煤机滚筒调高量预测. 工矿自动化. 2024(02): 116-123 .
    9. 问永忠. 综放工作面基于透明地质的智能协同开采技术. 陕西煤炭. 2024(05): 1-6 .
    10. 于建军,王建成,刘百祥. 基于地质物探数据的工作面透明地质模型构建研究与应用. 山东煤炭科技. 2024(04): 157-161+167+173 .
    11. 杨胜利,张燊,王旭东,张凯,辛德林,翟瑞昊. 煤与天然气协同开采理论与技术构想. 煤炭科学技术. 2024(04): 50-68 . 本站查看
    12. 余俊辉. 煤矿井下钻孔雷达技术在煤层顶底板探测中的应用. 能源与节能. 2024(05): 263-267+272 .
    13. 丁序海,张侯,陈录平,党国杰. 基于多频无线电坑透技术的煤矿地质综合勘探研究. 能源与环保. 2024(06): 82-87 .
    14. 朱墨然. 煤矿瓦斯抽采钻孔三维模拟及控制效果评价. 矿业安全与环保. 2024(03): 50-55+64 .
    15. 时宝,韩浩亮,庞博,包若羽,刘懿,伦嘉云. 新时期煤矿机械化与智能化发展现状及协同路径探讨. 煤炭科技. 2024(03): 1-6 .
    16. 李鑫超,周脉勇,李轩,祝永涛,秦涛. 基于工作面地质模型自适应开采的碰撞检测方法研究. 煤炭工程. 2024(07): 159-164 .
    17. 张宝军,乔永航. 煤矿液压牵引采煤机截割路径多目标规划方法及其工程应用. 液压气动与密封. 2024(09): 6-12 .
    18. 于斌,邰阳,徐刚,李勇,李东印,王世博,匡铁军,孟二存. 千万吨级综放工作面智能化放煤理论及关键技术. 煤炭科学技术. 2024(09): 48-67 . 本站查看
    19. 高杬,霍金刚,吴博. 薄煤层高精度透明地质模型构建与应用. 陕西煤炭. 2024(11): 139-142+165 .
    20. 贺耀宜,代左朋,杨耀,屈世甲,张清,孙旭峰,张涛. 采煤工作面CH_4大样本数据感知关键技术及监测模式研究. 工矿自动化. 2024(11): 17-25+91 .
    21. 莫斌. 基于透明地质模型和煤岩识别的自主割煤技术实践探析. 中国煤炭. 2024(S1): 58-62 .
    22. 郭钊吾,宋晓夏,任海青,李凯杰,邓永鹏. 东周窑井田多尺度三维地质建模. 煤矿安全. 2023(01): 161-171 .
    23. 贾建称,贾茜,桑向阳,吴艳. 我国煤矿地质保障系统建设30年:回顾与展望. 煤田地质与勘探. 2023(01): 86-106 .
    24. 符大利. 透明工作面采煤机规划调高策略研究. 煤矿安全. 2023(04): 226-231 .
    25. 胡腾飞,辛德林,陈一兵,刘艳,王昭舜. 万利一矿地质保障系统建设研究. 煤矿机械. 2023(05): 184-186 .
    26. 吴国庆,马彦龙. 地质透明化工作面内多种异常体的槽波解释方法研究. 煤炭科学技术. 2023(05): 149-160 . 本站查看
    27. 胡南燕,黄建彬,罗斌玉,刘兰心,元宙昊. 透明岩石相似材料配比试验研究. 煤炭科学技术. 2023(06): 52-61 . 本站查看
    28. 张意,康正明,冯宏,李飞,李新,韩雪. 方位电磁波仪器PeriScope水平井煤岩边界探测特性研究. 煤炭科学技术. 2023(06): 158-167 . 本站查看
    29. 钮涛,张弘,张铁聪,董佳,贾瑞杰. 综采工作面自适应截割路径规划算法研究. 中国煤炭. 2023(08): 48-53 .
    30. 翟成,丛钰洲,陈爱坤,丁熊,李宇杰,朱薪宇,徐鹤翔. 中国煤矿瓦斯突出灾害治理的若干思考及展望. 中国矿业大学学报. 2023(06): 1146-1161 .
    31. 董博,李旭,史云,李磊,乔佳妮. 基于地质保障系统的煤矿安全开采规划控制方法. 煤矿安全. 2023(12): 167-174 .
    32. 王国法. 煤矿智能化最新技术进展与问题探讨. 煤炭科学技术. 2022(01): 1-27 . 本站查看
    33. 原长锁,王峰. 综采工作面透明化开采模式及关键技术. 工矿自动化. 2022(03): 11-15+31 .
    34. 程建远,王保利,范涛,王云宏,蒋必辞. 煤矿地质透明化典型应用场景及关键技术. 煤炭科学技术. 2022(07): 1-12 . 本站查看
    35. 朱梦博,程建远,刘浪,屈慧升,崔伟雄. 顺煤层钻孔约束的采煤工作面煤层迭代高精度建模方法研究. 采矿与安全工程学报. 2022(05): 879-890 .
    36. 张超林,王恩元,许江,彭守建. 瓦斯抽采中煤层参数动态响应及其应用. 煤炭科学技术. 2021(05): 127-134 . 本站查看
    37. 姜琳,孙超,汪鹏,叶兰,刘立. 综采工作面智能化采煤系统关键技术及应用. 中国煤炭. 2021(06): 34-39 .
    38. 王世斌,于水,刘长来. 以系统化思维打造智能化开采建设新模式. 煤炭科学技术. 2021(S1): 1-7 . 本站查看
    39. 李靖. 智能工作面多参量精准感知平台及应用分析. 内蒙古煤炭经济. 2021(14): 57-58 .

    Other cited types(8)

Catalog

    Article views (69) PDF downloads (40) Cited by(47)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return