Advance Search
WANG Dong,YIN Li,CAO Lanzhu,et al. Prediction method of surface deformation around soft base dump based on viscoelastic theory[J]. Coal Science and Technology,2025,53(6):432−444. DOI: 10.12438/cst.2024-0313
Citation: WANG Dong,YIN Li,CAO Lanzhu,et al. Prediction method of surface deformation around soft base dump based on viscoelastic theory[J]. Coal Science and Technology,2025,53(6):432−444. DOI: 10.12438/cst.2024-0313

Prediction method of surface deformation around soft base dump based on viscoelastic theory

More Information
  • Received Date: March 12, 2024
  • Available Online: June 09, 2025
  • Addressing the challenge of surrounding surface deformation induced by soil discharge field pile loads in weak substrates, this study delves into the mechanisms and impacts of such deformations extensively, drawing from the theory of laminar elastic systems. Employing calculus principles to differentiate the soil discharge field load and overlay the effects on the surrounding soil, coupled with considerations of substrate surface stress boundary conditions and interlayer interface continuity, the study introduces the generalized Kelvin triaxial creep model to more precisely characterize the deformation traits of weak substrates. Consequently, a methodology for addressing peripheral ground surface deformation of viscoelastic substrate soil discharge fields with rheological characteristics is derived. For the investigation, the discharging yard of the lower plate of Crooked Head Mountain Iron Mine of Bensteel Group is selected as a case study. A series of quantitative data is obtained through calculations and predictions of surface deformation on layered viscoelastic substrates under pile load actions in the discharging yard. It is observed that the settlement of piers around the discharging yard and the variation in settlement between neighboring piers gradually increase with time evolution, eventually reaching a stable state. Furthermore, in parallel sections, the settlement of the discharging yard and high-speed rail lines is 2.5 and 2.3 times respectively. The settlement in the parallel section is measured at 2.08 mm, with the maximum settlement difference of adjacent piers being 0.006 mm/m. Comparative analysis with on-site monitoring data indicates close alignment between the surface deformation analysis results and actual conditions, thereby validating the efficacy and soundness of the viscoelastic substrate's surface deformation solution around the discharging field. Notably, the analyzed values remain below normative thresholds. Further examination reveals key patterns in factors influencing surface deformation around earth displacement fields (such as slope height, angle, surface distance, and time). Notably, the distance of the earth displacement field from the slope's foot inversely correlates with surrounding surface deformation, while greater slope height and angle exacerbate deformation. Additionally, surface deformation evolves over construction time, peaking quickly before stabilizing. Overall, the findings furnish a theoretical underpinning and practical guidance for comprehending and mitigating surface deformation caused by soft substrate disposal site pile loads. The proposed solutions offer novel insights and methods for managing surface deformation in analogous projects, with the potential for positive application in engineering practice.

  • [1]
    K. TERASAWA. On the Elastic Equilibrium of a semi-infinite Elastic solid[J]. Coll. of sc. Imperial University of Tokyo,1916(12):35−37.
    [2]
    IX. The stress produced in a semi-infinite solid by pressure on part of the boundary[J]. Philosophical Transactions of the Royal Society of London Series A,Containing Papers of a Mathematical or Physical Character,1929,228(659-669):377−420.
    [3]
    ACUM W E A,FOX L. Computation of load stresses in a three-layer elastic system[J]. Géotechnique,1951,2(4):293−300.
    [4]
    ХРУСТАЛЕВ А Ф,КОГАН Б И. Об одной граничной задаче для бигармонического уравнения,встречающейся в теории упругости[J]. Известия высших учебных заведений. Математика,1958(3):241−247.
    [5]
    DE JONG D L,PEUTZ M G F,KORSWAGEN A R. Layered Systems under Normal and Tangential Surface Loads—‘BISAR’ Computer Program[R]. Koninklijke/Shell Laboratorium,Amsterdam:External Report AMSR,1973.
    [6]
    朱照宏. 路面力学计算[M]. 北京:人民交通出版社,1985.
    [7]
    吴晋伟. 多层路面的应力分析[J]. 中南公路工程,1983,8(2):73−92.

    WU Jinwei. Stress analysis of multi-layer pavement[J]. Central South Highway Engineering,1983,8(2):73−92.
    [8]
    梁锡三. 多层弹性体系应力与位移的计算[J]. 力学学报,1978,10(3):202−209.

    LIANG Xisan. Calculation of stress and displacement of multilayer elastic system[J]. Chinese Journal of Theoretical and Applied Mechanics,1978,10(3):202−209.
    [9]
    王凯. 层状弹性体系理论及其在半刚性基层沥青路面分析中的应用[J]. 中国公路学报,1990,3(4):32−41,13.

    WANG Kai. Theory of elastic layered system and its applicatzon to the analysis of asphalt pavement with semi-rigid type base[J]. China Journal of Highway and Transport,1990,3(4):32−41,13.
    [10]
    王凯. N层弹性体系在多圆向心水平荷载作用下的力学计算[J]. 重庆交通学院学报,1984,3(2):50−64.

    WANG Kai. Calculation of stresses,strains and displacements in an N-layered elastic system under the multiple inward horizontal loads on circular areas[J]. Journal of Chongqing Jiaotong University,1984,3(2):50−64.
    [11]
    王凯,姚炳卿. N层弹性体系在多圆旋转水平荷载作用下的力学计算[J]. 长安大学学报(自然科学版),1986(3):15−30.

    WANG Kai. YAO Bingqing. Mechanical calculation of N-layer elastic system under multi-circle rotating horizontal load[J]. Journal of Xi’an Highway University,1986(3):15−30
    [12]
    王凯. N层弹性体系在多圆均布复合荷载作用下的力学计算[J]. 土木工程学报,1986,19(1):55−71.

    WANG Kai. Static calculation of n-layer elastic system under combined loads uniformly distributed on circular areas[J]. China Civil Engineering Journal,1986,19(1):55−71.
    [13]
    KAI W. Analysis and calculation of stresses and displacements in layered elastic systems[J]. Acta Mechanica Sinica,1987,3(3):251−260. doi: 10.1007/BF02486771
    [14]
    姜朋明,陈光敬. 粘弹性层状地基轴对称问题的求解[J]. 工程力学,1999,16(5):77−82.

    JIANG Pengming,CHEN Guangjing. Solutions of axisymmetric problems of layered visco-elastic body[J]. Engineering Mechanics,1999,16(5):77−82.
    [15]
    支喜兰,江晓霞,沙爱民. 路面基层振动压实作用下的底基层应力[J]. 长安大学学报(自然科学版),2003,23(3):33−36. doi: 10.3321/j.issn:1671-8879.2003.03.008

    ZHI Xilan,JIANG Xiaoxia,SHA Aimin. Pavement subbase course stress by vibrating compaction on course[J]. Journal of Xi’an Highway University,2003,23(3):33−36. doi: 10.3321/j.issn:1671-8879.2003.03.008
    [16]
    吕惠卿,张湘伟,成思源. 水泥混凝土路面力学性能研究综述[J]. 重庆大学学报(自然科学版),2005,28(6):60−63,105.

    LV Huiqing,ZHANG Xiangwei,CHENG Siyuan. Study on mechanical properties of cement concrete pavements[J]. Journal of Chongqing University (Natural Science Edition),2005,28(6):60−63,105.
    [17]
    杨国良,王端宜,张肖宁. 应用弯沉盆反算土基回弹模量[J]. 哈尔滨工业大学学报,2009,41(8):137−141. doi: 10.3321/j.issn:0367-6234.2009.08.029

    YANG Guoliang,WANG Duanyi,ZHANG Xiaoning. Backcalculation of subgrade resilient modulus using deflection basin[J]. Journal of Harbin Institute of Technology,2009,41(8):137−141. doi: 10.3321/j.issn:0367-6234.2009.08.029
    [18]
    艾智勇,刘鹏,成怡冲. 轴对称荷载作用下层状黏弹性体系的解析层元解[J]. 中国科技论文在线,2011,6(11):792−796.

    AI Zhiyong,LIU Peng,CHENG Yichong. Solution of analytical layer element for visco-elastic multilayered system under axisymmetrical loading[J]. Sciencepaper Online,2011,6(11):792−796.
    [19]
    阳恩慧,艾长发,邱延峻. 采用刚度矩阵法的弹性层状体系数值解法[J]. 交通运输工程学报,2014,14(4):14−24.

    YANG Enhui,AI Changfa,QIU Yanjun. Numerical method of multi-layer elastic system by using stiffness matrix method[J]. Journal of Traffic and Transportation Engineering,2014,14(4):14−24.
    [20]
    刘光伟,郭伟强,杜涵,等. 露天煤矿内排土场填方体变形规律研究[J]. 安全与环境学报,2023,23(9):3081−3089.

    LIU Guangwei,GUO Weiqiang,DU Han,et al. Study on the deformation law of the fill body of the internal waste dump in the open-pit mine[J]. Journal of Safety and Environment,2023,23(9):3081−3089.
    [21]
    毕仲辉,张燎军,翟亚飞,等. 层状边坡的地震动输入方法研究[J]. 水资源与水工程学报,2021,32(4):214−220. doi: 10.11705/j.issn.1672-643X.2021.04.29

    BI Zhonghui,ZHANG Liaojun,ZHAI Yafei,et al. Seismic input method of layered slopes[J]. Journal of Water Resources and Water Engineering,2021,32(4):214−220. doi: 10.11705/j.issn.1672-643X.2021.04.29
    [22]
    曹博,黄云龙,张院生,等. 承载河道下高大内排土场沉降蠕变三维反演分析[J]. 安全与环境学报,2022,22(3):1306−1314.

    CAO Bo,HUANG Yunlong,ZHANG Yuansheng,et al. Three dimensional back analysis on creep settlement of large inner dump with a river channel[J]. Journal of Safety and Environment,2022,22(3):1306−1314.
    [23]
    秦哲,刘永德,逄文龙,等. 不同峰前卸荷与循环侵水作用后的黄砂岩再承载蠕变特性研究[J]. 岩石力学与工程学报,2024,43(2):358−370.

    QIN Zhe,LIU Yongde,PANG Wenlong,et al. Reloading experimental research on the creep properties of yellow sandstone samples considering pre-peak unloading and cyclic water intrusion damage[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(2):358−370.
    [24]
    周瑞鹤,程桦,蔡海兵,等. 三轴压缩分级卸荷条件下粉砂岩蠕变特性及蠕变模型[J]. 岩石力学与工程学报,2022,41(6):1136−1147.

    ZHOU Ruihe,CHENG Hua,CAI Haibing,et al. Creep characteristics and creep model of siltstone under triaxial compression and graded unloading[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(6):1136−1147.
    [25]
    王凯. 层状弹性体系的力学分析与计算[M]. 第2版. 北京:科学出版社,2016.
    [26]
    吴家龙. 弹性力学[M]. 3版. 北京:高等教育出版社,2016:137-164.
    [27]
    严作人. 弹粘性半空间体的力学分析[J]. 同济大学学报,1987,15(2):50−59.

    YAN Zuoren. Stress and displacement analysis of semi-infinite viscoelastic system[J]. Journal of Tongji University,1987,15(2):50−59.
    [28]
    严作人. 弹粘性层状体系的力学分析[J]. 同济大学学报,1988,16(4):473−484.

    YAN Zuoren. Mechanical analysis of viscoelastic multi-layered systems[J]. Journal of Tongji University,1988,16(4):473−484.
    [29]
    国家铁路局. 高速铁路设计规范:TB 10621—2014[S]. 北京:中国铁道出版社,2015.
    [30]
    国家铁路局. 铁路桥涵设计规范:TB 10002—2017[S]. 北京:中国铁道出版社,2017.
  • Related Articles

    [1]SHI Guomou, ZHANG Lijia, HU Zhenqi, FU Yaokun. Research on surface movement and deformation characteristics of loess gully landform in Northern Shaanxi[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(4): 157-165. DOI: 10.13199/j.cnki.cst.2021-0626
    [2]SHEN Xingyu, ZHANG Ermeng, FEI Yu, GAI Qiukai, CAO Guangming. Study on deformation law of leveling and uplift of shallow clay layer and surface water-saturated sand layer[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(10): 51-59.
    [3]LU Mingxing, MA Zhanwu, TIAN Shuai. Study on creep characteristics and unsteady creep model of roadway surrounding rock[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(8): 67-72.
    [4]YAN Yueguan SHI Xiaobo LIU Jibo TIAN Xiuguo ZHANG Guoguang, . In-site monitoring study on relationship between movement and deformation of surface and buildings in mining area[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(10).
    [5]JIA Xinguo, SONG Guijun, CHEN Kai. Study on influence of mining face advancing velocity on progressive surface subsidence and deformation[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (7).
    [6]Zhang Xiao Wang Donglin Zhang Mingpeng Xiao Zhimin Dong Haifeng, . Study on influence of gangue filling and interval roadway excavation to surface movement and deformation[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (12).
    [7]Wang Zhengshuai Deng Kazhong, . Analysis of surface residual deformation and stability evaluation of buildings foundation in old goaf[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (10).
    [8]FENG Jun TAN Zhi-xiang DENG Ka-zhong, . Study on surface inclined deformation affected to wind turbine tower silo[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (3).
    [9]Study on Discontinuous Deformation Law and Mechanism of Repeated Mining Surface Ground[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (2).
    [10]Study on Control Measures of Surface Ground Deformation Caused by Open Pit Mining[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (1).
  • Cited by

    Periodical cited type(39)

    1. 李黎黎,李合菊. 基于大数据的采煤机运行状态监测与评估. 煤矿机械. 2025(03): 208-211 .
    2. 王剑,张善兵,樊君. 基于地质保障+5G的智能透明开采技术研究. 能源科技. 2025(01): 10-13 .
    3. 王忠宾,李福涛,司垒,魏东,戴嘉良,张森. 采煤机自适应截割技术研究进展及发展趋势. 煤炭科学技术. 2025(01): 296-311 . 本站查看
    4. 张楷鑫,胡小刚,杨文宇,刘朝,王嘉宇,上官星驰. 基于小波阈值改进EEMD的微震信号联合去噪方法及应用. 能源与环保. 2025(02): 95-100 .
    5. 张村,贾胜,华埜,宋启. 矿山三维地质建模研究进展:原理、方法与应用. 煤炭科学技术. 2025(02): 222-238 . 本站查看
    6. 付翔,闫明. 煤炭开采技术的人工智能应用. 绿色矿山. 2025(01): 63-72 .
    7. 曹哲哲. 黄陵二号煤矿多维度地质模型大数据融合精准开采. 陕西煤炭. 2024(02): 126-129+141 .
    8. 齐爱玲,王雨,马宏伟. 基于改进门控循环神经网络的采煤机滚筒调高量预测. 工矿自动化. 2024(02): 116-123 .
    9. 问永忠. 综放工作面基于透明地质的智能协同开采技术. 陕西煤炭. 2024(05): 1-6 .
    10. 于建军,王建成,刘百祥. 基于地质物探数据的工作面透明地质模型构建研究与应用. 山东煤炭科技. 2024(04): 157-161+167+173 .
    11. 杨胜利,张燊,王旭东,张凯,辛德林,翟瑞昊. 煤与天然气协同开采理论与技术构想. 煤炭科学技术. 2024(04): 50-68 . 本站查看
    12. 余俊辉. 煤矿井下钻孔雷达技术在煤层顶底板探测中的应用. 能源与节能. 2024(05): 263-267+272 .
    13. 丁序海,张侯,陈录平,党国杰. 基于多频无线电坑透技术的煤矿地质综合勘探研究. 能源与环保. 2024(06): 82-87 .
    14. 朱墨然. 煤矿瓦斯抽采钻孔三维模拟及控制效果评价. 矿业安全与环保. 2024(03): 50-55+64 .
    15. 时宝,韩浩亮,庞博,包若羽,刘懿,伦嘉云. 新时期煤矿机械化与智能化发展现状及协同路径探讨. 煤炭科技. 2024(03): 1-6 .
    16. 李鑫超,周脉勇,李轩,祝永涛,秦涛. 基于工作面地质模型自适应开采的碰撞检测方法研究. 煤炭工程. 2024(07): 159-164 .
    17. 张宝军,乔永航. 煤矿液压牵引采煤机截割路径多目标规划方法及其工程应用. 液压气动与密封. 2024(09): 6-12 .
    18. 于斌,邰阳,徐刚,李勇,李东印,王世博,匡铁军,孟二存. 千万吨级综放工作面智能化放煤理论及关键技术. 煤炭科学技术. 2024(09): 48-67 . 本站查看
    19. 高杬,霍金刚,吴博. 薄煤层高精度透明地质模型构建与应用. 陕西煤炭. 2024(11): 139-142+165 .
    20. 贺耀宜,代左朋,杨耀,屈世甲,张清,孙旭峰,张涛. 采煤工作面CH_4大样本数据感知关键技术及监测模式研究. 工矿自动化. 2024(11): 17-25+91 .
    21. 莫斌. 基于透明地质模型和煤岩识别的自主割煤技术实践探析. 中国煤炭. 2024(S1): 58-62 .
    22. 郭钊吾,宋晓夏,任海青,李凯杰,邓永鹏. 东周窑井田多尺度三维地质建模. 煤矿安全. 2023(01): 161-171 .
    23. 贾建称,贾茜,桑向阳,吴艳. 我国煤矿地质保障系统建设30年:回顾与展望. 煤田地质与勘探. 2023(01): 86-106 .
    24. 符大利. 透明工作面采煤机规划调高策略研究. 煤矿安全. 2023(04): 226-231 .
    25. 胡腾飞,辛德林,陈一兵,刘艳,王昭舜. 万利一矿地质保障系统建设研究. 煤矿机械. 2023(05): 184-186 .
    26. 吴国庆,马彦龙. 地质透明化工作面内多种异常体的槽波解释方法研究. 煤炭科学技术. 2023(05): 149-160 . 本站查看
    27. 胡南燕,黄建彬,罗斌玉,刘兰心,元宙昊. 透明岩石相似材料配比试验研究. 煤炭科学技术. 2023(06): 52-61 . 本站查看
    28. 张意,康正明,冯宏,李飞,李新,韩雪. 方位电磁波仪器PeriScope水平井煤岩边界探测特性研究. 煤炭科学技术. 2023(06): 158-167 . 本站查看
    29. 钮涛,张弘,张铁聪,董佳,贾瑞杰. 综采工作面自适应截割路径规划算法研究. 中国煤炭. 2023(08): 48-53 .
    30. 翟成,丛钰洲,陈爱坤,丁熊,李宇杰,朱薪宇,徐鹤翔. 中国煤矿瓦斯突出灾害治理的若干思考及展望. 中国矿业大学学报. 2023(06): 1146-1161 .
    31. 董博,李旭,史云,李磊,乔佳妮. 基于地质保障系统的煤矿安全开采规划控制方法. 煤矿安全. 2023(12): 167-174 .
    32. 王国法. 煤矿智能化最新技术进展与问题探讨. 煤炭科学技术. 2022(01): 1-27 . 本站查看
    33. 原长锁,王峰. 综采工作面透明化开采模式及关键技术. 工矿自动化. 2022(03): 11-15+31 .
    34. 程建远,王保利,范涛,王云宏,蒋必辞. 煤矿地质透明化典型应用场景及关键技术. 煤炭科学技术. 2022(07): 1-12 . 本站查看
    35. 朱梦博,程建远,刘浪,屈慧升,崔伟雄. 顺煤层钻孔约束的采煤工作面煤层迭代高精度建模方法研究. 采矿与安全工程学报. 2022(05): 879-890 .
    36. 张超林,王恩元,许江,彭守建. 瓦斯抽采中煤层参数动态响应及其应用. 煤炭科学技术. 2021(05): 127-134 . 本站查看
    37. 姜琳,孙超,汪鹏,叶兰,刘立. 综采工作面智能化采煤系统关键技术及应用. 中国煤炭. 2021(06): 34-39 .
    38. 王世斌,于水,刘长来. 以系统化思维打造智能化开采建设新模式. 煤炭科学技术. 2021(S1): 1-7 . 本站查看
    39. 李靖. 智能工作面多参量精准感知平台及应用分析. 内蒙古煤炭经济. 2021(14): 57-58 .

    Other cited types(8)

Catalog

    Article views (27) PDF downloads (10) Cited by(47)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return