Advance Search
XUE Guanghui,ZHANG Zhenghao,ZHANG Guiyi,et al. Improvement of point cloud feature extraction and alignment algorithms and lidar slam in coal mine underground[J]. Coal Science and Technology,2025,53(5):301−312. DOI: 10.12438/cst.2024-0296
Citation: XUE Guanghui,ZHANG Zhenghao,ZHANG Guiyi,et al. Improvement of point cloud feature extraction and alignment algorithms and lidar slam in coal mine underground[J]. Coal Science and Technology,2025,53(5):301−312. DOI: 10.12438/cst.2024-0296

Improvement of point cloud feature extraction and alignment algorithms and lidar slam in coal mine underground

More Information
  • Received Date: March 09, 2024
  • Available Online: May 08, 2025
  • LiDAR SLAM faces challenges in the narrow and confined unstructured environment of underground coal mines, where inaccurate point cloud pose estimation due to few or complex features can result in distortion or even map construction failure. To address the difficulties in LiDAR point cloud feature extraction and registration in this degraded environment, a two-stage method integrating FPFH and ICP algorithms is proposed. Initially, the method constructs kd-tree structures for the source and target point clouds, reduces point cloud numbers through statistical and voxel filtering, extracts point cloud surface normal, and computes fast point feature histogram descriptors for key points. Subsequently, a coarse registration is performed using the sampling consistency initial registration algorithm, followed by fine registration using the ICP algorithm to enhance point cloud registration accuracy and pose estimation precision. Furthermore, enhancements are made to the feature extraction and registration algorithm of the LIO-SAM, along with the optimization algorithm of the back-end loopback factor, to improve key local feature identification and registration capabilities. The addition of the Scan Context global descriptor loop factor enhances loop detection accuracy for consistent global mapping. Experimental testing on the M2DGR public dataset and SLAM experiments in simulated coal mine scenarios demonstrate the effectiveness of the improved algorithm in feature extraction and registration of the point clouds. Compared to the traditional LIO-SAM algorithm, the improved algorithm showcases higher accuracy in pose estimation and point cloud registration, with a 6.52% improvement in average relative position error and an 18.84% reduction in maximum absolute position error. The resulting maps exhibit no obvious distortion and mapping errors are within 1%, allowing for the construction of high-precision consistent global maps in unstructured and degraded environments.

  • [1]
    葛世荣,胡而已,裴文良. 煤矿机器人体系及关键技术[J]. 煤炭学报,2020,45(1):455−463.

    GE Shirong,HU Eryi,PEI Wenliang. Classification system and key technology of coal mine robot[J]. Journal of China Coal Society,2020,45(1):455−463.
    [2]
    薛光辉,李瑞雪,张钲昊,等. 基于3D激光雷达的SLAM算法研究现状与发展趋势[J]. 信息与控制,2023,52(1):18−36.

    XUE Guanghui,LI Ruixue,ZHANG Zhenghao,et al. State-of-the-art and tendency of SLAM algorithms based on 3D LiDAR[J]. Information and Control,2023,52(1):18−36.
    [3]
    SHAN T X,ENGLOT B,MEYERS D,et al. LIO-SAM:Tightly-coupled lidar inertial odometry via smoothing and mapping[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway,NJ:IEEE,2020:5135−5142.
    [4]
    ZHANG J,SINGH S. LOAM:Lidar odometry and mapping in real-time [C/OL]//California:Robotics:Science and Systems. 2014,2(9):1−9[2022−12−20]. http://www.roboticsproceedings.org/rss10/p07.pdf.
    [5]
    GUO S Y,RONG Z,WANG S,et al. A LiDAR SLAM with PCA-based feature extraction and two-stage matching[J]. IEEE Transactions on Instrumentation and Measurement,2022,71:8501711.
    [6]
    CHENG D Y,ZHANG J C,ZHAO D J,et al. Automatic extraction of indoor structural information from point clouds[J]. Remote Sensing,2021,13(23):4930. doi: 10.3390/rs13234930
    [7]
    SALTI S,TOMBARI F,DI STEFANO L. SHOT:Unique signatures of histograms for surface and texture description[J]. Computer Vision and Image Understanding,2014,125:251−264. doi: 10.1016/j.cviu.2014.04.011
    [8]
    PRAKHYA S M,LIU B B,LIN W S. B-SHOT:A binary feature descriptor for fast and efficient keypoint matching on 3D point clouds[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway,NJ:IEEE,2015:1929−1934.
    [9]
    SCOVANNER P,ALI S,SHAH M. A 3-dimensional sift descriptor and its application to action recognition[C]//Proceedings of the 15th ACM International Conference on Multimedia. New York:ACM,2007:357−360.
    [10]
    SIPIRAN I,BUSTOS B. A robust 3D interest points detector based on harris operator[C]//Eurographics Workshop on 3D Object Retrieval,Norrköping:The Eurographics Association,2010:7−14.
    [11]
    KNOPP J,PRASAD M,WILLEMS G,et al. Hough transform and 3D SURF for robust three dimensional classification[M]//Computer vision–ECCV 2010. Berlin:Springer Berlin Heidelberg,2010:589−602.
    [12]
    ZHONG Y. Intrinsic shape signatures:A shape descriptor for 3D object recognition[C]//2009 IEEE 12th International Conference on Computer Vision Workshops,ICCV Workshops. Piscataway,NJ:IEEE,2009:689−696.
    [13]
    DERPANIS K G. Overview of the RANSAC Algorithm[J]. Image Rochester NY,2010,4(1):2−3.
    [14]
    陈学伟,朱耀麟,武桐,等. 基于SAC-IA和改进ICP算法的点云配准技术[J]. 西安工程大学学报,2017,31(3):395−401.

    CHEN Xuewei,ZHU Yaolin,WU Tong,et al. The point cloud registration technology based on SAC-IA and improved ICP[J]. Journal of Xi’an Polytechnic University,2017,31(3):395−401.
    [15]
    BIBER P,STRASSER W. The normal distributions transform:A new approach to laser scan matching[C]//Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003). Piscataway,NJ:IEEE,2003:2743−2748.
    [16]
    RUSINKIEWICZ S,LEVOY M. Efficient variants of the ICP algorithm[C]//Proceedings Third International Conference on 3-D Digital Imaging and Modeling. Piscataway,NJ:IEEE,2001:145−152.
    [17]
    BESL P J,MCKAY N D. Method for registration of 3-D shapes [C]//Sensor fusion IV:Control paradigms and data structures. Piscataway,USA:Spie,1992,1611:586−606.
    [18]
    CHEN Y,MEDIONI G. Object modelling by registration of multiple range images[J]. Image and Vision Computing,1992,10(3):145−155. doi: 10.1016/0262-8856(92)90066-C
    [19]
    OLSON E. M3RSM:Many-to-many multi-resolution scan matching[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). Piscataway,NJ:IEEE,2015:5815−5821.
    [20]
    RIZZINI D L. Place recognition of 3D landmarks based on geometric relations[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway,NJ:IEEE,2017:648−654.
    [21]
    FAN Y F,HE Y C,TAN U X. Seed:A segmentation-based egocentric 3D point cloud descriptor for loop closure detection[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway,NJ:IEEE,2020:5158−5163.
    [22]
    DUBÉ R,DUGAS D,STUMM E,et al. SegMatch:Segment based place recognition in 3D point clouds[C]//2017 IEEE International Conference on Robotics and Automation (ICRA). Piscataway,NJ:IEEE,2017:5266−5272.
    [23]
    DUBÉ R,CRAMARIUC A,DUGAS D,et al. SegMap:3D segment mapping using data-driven descriptors[EB/OL]. 2018:1804.09557[2022−12−20]. https://arxiv.org/abs/1804.09557v2.
    [24]
    KIM G,KIM A. Scan context:Egocentric spatial descriptor for place recognition within 3D point cloud map[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway,NJ:IEEE,2018:4802−4809.
    [25]
    RAVAL S,BANERJEE B P,KUMAR SINGH S,et al. A preliminary investigation of mobile mapping technology for underground mining[C]//2019 IEEE International Geoscience and Remote Sensing Symposium. Piscataway,NJ:IEEE,2019:6071−6074.
    [26]
    DONG L F,CHEN W D,WANG J C. Efficient feature extraction and localizability based matching for lidar SLAM[C]//2021 IEEE International Conference on Robotics and Biomimetics (ROBIO). Piscataway,NJ:IEEE,2021:820−825.
    [27]
    HUANG Z Y,LU J G. A new laser-based loop detection method for laneway environment 3D mapping[C]//2021 China Automation Congress (CAC). Piscataway,NJ:IEEE,2021:3219−3223.
    [28]
    REN Z L,WANG L G,BI L. Robust GICP-based 3D LiDAR SLAM for underground mining environment[J]. Sensors,2019,19(13):2915. doi: 10.3390/s19132915
    [29]
    REN Z L,WANG L G. Accurate real-time localization estimation in underground mine environments based on a distance-weight map (DWM)[J]. Sensors,2022,22(4):1463. doi: 10.3390/s22041463
    [30]
    邹筱瑜,黄鑫淼,王忠宾,等. 基于集成式因子图优化的煤矿巷道移动机器人三维地图构建[J]. 工矿自动化,2022,48(12):57−67,92.

    ZOU Xiaoyu,HUANG Xinmiao,WANG Zhongbin,et al. 3D map construction of coal mine roadway mobile robot based on integrated factor graph optimization[J]. Journal of Mine Automation,2022,48(12):57−67,92.
    [31]
    薛光辉,李瑞雪,张钲昊,等. 基于激光雷达的煤矿井底车场地图融合构建方法研究[J]. 煤炭科学技术,2023,51(8):219−227.

    XUE Guanghui,LI Ruixue,ZHANG Zhenghao,et al. Lidar based map construction fution method for underground coal mine shaft bottom[J]. Coal Science and Technology,2023,51(8):219−227.
    [32]
    韩超,陈敏,黄宇昊,等. 基于全局特征描述子的激光 SLAM 回环检测方法[J]. 上海交通大学学报,2022,56(10):1379.

    HAN Chao,CHEN Min,HUANG Yuhao,et al. Loop closure detection method of laser slam based on global feature descriptor[J]. Journal of Shanghai Jiao Tong University,2022,56(10):1379.
    [33]
    杨林,马宏伟,王岩. 基于激光惯性融合的煤矿井下移动机器人SLAM算法[J]. 煤炭学报,2022,47(9):3523−3534.

    YANG Lin,MA Hongwei,WANG Yan. LiDAR-Inertial SLAM for mobile robot in underground coal mine[J]. Journal of China Coal Society,2022,47(9):3523−3534.
    [34]
    RUSU R B,BLODOW N,MARTON Z C,et al. Aligning point cloud views using persistent feature histograms[C]//2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway,NJ:IEEE,2008:3384−3391.
    [35]
    RUSU R B,BLODOW N,BEETZ M. Fast point feature histograms (FPFH) for 3D registration[C]//2009 IEEE International Conference on Robotics and Automation. Piscataway,NJ:IEEE,2009:3212−3217.
    [36]
    周玉,朱文豪,房倩,等. 基于聚类的离群点检测方法研究综述[J]. 计算机工程与应用,2021,57(12):37−45. doi: 10.3778/j.issn.1002-8331.2102-0167

    ZHOU Yu,ZHU Wenhao,FANG Qian,et al. Survey of outlier detection methods based on clustering[J]. Computer Engineering and Applications,2021,57(12):37−45. doi: 10.3778/j.issn.1002-8331.2102-0167
    [37]
    YIN J,LI A,LI T,et al. M2DGR:A multi-sensor and multi-scenario SLAM dataset for ground robots[J]. IEEE Robotics and Automation Letters,2022,7(2):2266−2273. doi: 10.1109/LRA.2021.3138527

Catalog

    Article views (92) PDF downloads (25) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return