Advance Search
ZHAO Pengxiang,PEI Wenbo,LI Shugang,et al. Structure of soft and hard interbedded overburden rock under the influence of thickness ratio affects the cross fusion of pressure relief gas transportation and storage area[J]. Coal Science and Technology,2025,53(2):163−177. DOI: 10.12438/cst.2024-0282
Citation: ZHAO Pengxiang,PEI Wenbo,LI Shugang,et al. Structure of soft and hard interbedded overburden rock under the influence of thickness ratio affects the cross fusion of pressure relief gas transportation and storage area[J]. Coal Science and Technology,2025,53(2):163−177. DOI: 10.12438/cst.2024-0282

Structure of soft and hard interbedded overburden rock under the influence of thickness ratio affects the cross fusion of pressure relief gas transportation and storage area

More Information
  • Received Date: September 27, 2024
  • Available Online: February 21, 2025
  • In order to grasp the thickness ratio effect of soft and hard interbedded overburden structure on the cross–fusion of pressure relief gas transportation and storage area, the soft and hard interbedded overburden structure with different thickness ratios was taken as the test object, and the two–dimensional physical similarity simulation experiment platform was used to carry out the crack evolution and breaking mechanism experiment of soft and hard interbedded overburden structure. Combined with the fractal theory, the fracture distribution characteristics of soft and hard interbedded overburden structure were quantitatively described. According to the theory of mining overburden elliptic paraboloid zone, the characteristic parameters such as rotation angle, penetration degree and fracture rate were introduced to study the dynamic change characteristics of cross–fusion of gas migration area and reservoir area in soft and hard interbedded overburden structure affected by the thickness ratio of soft and hard interbedded structure.The experimental results show that the internal and external boundaries of the gas transport–storage area and the transport–storage boundary are located in the mutation areas of fractal dimension, fracture penetration, fracture rotation angle and fracture rate, respectively. The fracture rotation angle of the migration area is greater than 2.07°, and the fracture rotation angle of the reservoir area is 1°~2.07°. The fracture connectivity of gas migration area and reservoir area is 0.6~1.0 and 0.2~0.6, respectively. According to the changes of fracture rate, rotation angle and penetration degree in gas transportation–reservoir area, the boundary of gas migration area, reservoir area and cross fusion area is determined. The fracture rate, rotation angle and penetration degree decrease rapidly at first, then the decrease rate slows down obviously, and finally the decrease rate increases again. The overlying strata of the soft and hard interbedded strata experienced five periods: the formation of the transport–reservoir area, the first appearance of the migration area and the reservoir area, the first formation of the cross–fusion area, the expansion of the cross–fusion area, and the gradual blurring of the transport–reservoir area and the cross–fusion boundary. Finally, a complete elliptical parabolic banded overburden fracture field was formed. The quantitative characterization model of thickness ratio effect of gas transport–storage area in soft and hard interbedded overburden structure is established. At the same time, the boundary and state determination process are determined according to the characterization parameters of gas transport–storage area, and the fracture evolution and fracture mechanism of overlying strata in soft and hard interbedded overburden structure are determined.

  • [1]
    丁恩理,刘越,吴继敏,等. 软硬互层状类岩石试样力学特性的三轴试验研究[J]. 地下空间与工程学报,2020,16(S1):39−46.

    DING Enli,LIU Yue,WU Jimin,et al. Triaxial test study on the mechanical properties of soft-hard interbedded rocklike specimens[J]. Chinese Journal of Underground Space and Engineering,2020,16(S1):39−46.
    [2]
    袁亮. 我国煤炭主体能源安全高质量发展的理论技术思考[J]. 中国科学院院刊,2023,38(1):11−22.

    YUAN Liang. Theory and technology considerations on high-quality development of coal main energy security in China[J]. Bulletin of Chinese Academy of Sciences,2023,38(1):11−22.
    [3]
    钱鸣高,许家林,王家臣. 再论煤炭的科学开采[J]. 煤炭学报,2018,43(1):1−13.

    QIAN Minggao,XU Jialin,WANG Jiachen. Further on the sustainable mining of coal[J]. Journal of China Coal Society,2018,43(1):1−13.
    [4]
    孙钦平,赵群,姜馨淳,等. 新形势下中国煤层气勘探开发前景与对策思考[J]. 煤炭学报,2021,46(1):65−76.

    SUN Qinping,ZHAO Qun,JIANG Xinchun,et al. Prospects and strategies of CBM exploration and development in China under the new situation[J]. Journal of China Coal Society,2021,46(1):65−76.
    [5]
    赵鹏翔,常泽晨,李树刚,等. 厚煤层采空区定向孔分域抽采研究及应用[J]. 中国安全科学学报,2023,33(1):70−79.

    ZHAO Pengxiang,CHANG Zechen,LI Shugang,et al. Research and application of directional drilling sub area extraction in thick coal seam goaf[J]. China Safety Science Journal,2023,33(1):70−79.
    [6]
    赵平劳,姚增. 层状结构岩体的复合材料本构模型[J]. 兰州大学学报,1990,26(2):114−118.

    ZHAO Pinglao,YAO Zeng. The composite material constitutive model of bedded rocks[J]. Journal of Lanzhou University,1990,26(2):114−118.
    [7]
    刘立,梁伟,李月,等. 岩体层面力学特性对层状复合岩体的影响[J]. 采矿与安全工程学报,2006,23(2):187−191. doi: 10.3969/j.issn.1673-3363.2006.02.014

    LIU Li,LIANG Wei,LI Yue,et al. Influence of mechanical characteristic of bedding surface on stratified composite rock mass[J]. Journal of Mining & Safety Engineering,2006,23(2):187−191. doi: 10.3969/j.issn.1673-3363.2006.02.014
    [8]
    穆成林,裴向军,路军富,等. 基于尖点突变模型巷道层状围岩失稳机制及判据研究[J]. 煤炭学报,2017,42(6):1429−1435.

    MU Chenglin,PEI Xiangjun,LU Junfu,et al. Study on the instability criterion of layered rock mass failure based on the cusp catastrophe theory[J]. Journal of China Coal Society,2017,42(6):1429−1435.
    [9]
    李昂,邵国建,苏静波,等. 软硬互层状岩体的室内单轴压缩试验及数值模拟[J]. 河海大学学报(自然科学版),2018,46(6):533−538. doi: 10.3876/j.issn.1000-1980.2018.06.010

    LI Ang,SHAO Guojian,SU Jingbo,et al. Uniaxial compression test and numerical simulation for alternatively soft and hard interbedded rock mass[J]. Journal of Hohai University (Natural Sciences),2018,46(6):533−538. doi: 10.3876/j.issn.1000-1980.2018.06.010
    [10]
    康玉梅,谷今,魏梦琦. 不同加载速率下软硬互层类岩石力学及声发射特性[J]. 东北大学学报(自然科学版),2023,44(3):399−407.

    KANG Yumei,GU Jin,WEI Mengqi. Mechanical properties and acoustic emission characteristics of soft-hard interbedded rocks under different loading rates[J]. Journal of Northeastern University (Natural Science),2023,44(3):399−407.
    [11]
    刘新荣,何春梅,刘树林,等. 高频次微小地震下顺倾软硬互层边坡动力稳定性研究[J]. 岩土工程学报,2019,41(3):430−438. doi: 10.11779/CJGE201903004

    LIU Xinrong,HE Chunmei,LIU Shulin,et al. Dynamic stability of slopes with interbeddings of soft and hard layers under high-frequency microseims[J]. Chinese Journal of Geotechnical Engineering,2019,41(3):430−438. doi: 10.11779/CJGE201903004
    [12]
    陈宇龙,张宇宁,李科斌,等. 单轴压缩下软硬互层岩石破裂过程的离散元数值分析[J]. 采矿与安全工程学报,2017,34(4):795−802,816.

    CHEN Yulong,ZHANG Yuning,LI Kebin,et al. Distinct element numerical analysis of failure process of interlayered rock subjected to uniaxial compression[J]. Journal of Mining & Safety Engineering,2017,34(4):795−802,816.
    [13]
    姚池,李瑶,姜清辉,等. 应力作用下软硬互层岩石破裂过程的细观模拟[J]. 岩石力学与工程学报,2015,34(8):1542−1551.

    YAO Chi,LI Yao,JIANG Qinghui,et al. Mesoscopic model of failure process of interlayered rock under compression[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(8):1542−1551.
    [14]
    李杨杨,朱慧聪,张士川,等. 采动诱发的含原生裂隙覆岩运移及涌(淋)水时空信息特征试验研究[J]. 煤炭科学技术,2023,51(7):129−139.

    LI Yangyang,ZHU Huicong,ZHANG Shichuan,et al. Study on overlying strata containing primary fractures migration and spatial-temporal characteristics of water gushing (leaching) caused by mining field disturbance[J]. Coal Science and Technology,2023,51(7):129−139.
    [15]
    余伊河,马立强,张东升,等. 长壁工作面采动覆岩层理开裂机理及侧向裂隙发育规律[J]. 煤炭学报,2023,48(S2):527−541.

    YU Yihe,MA Liqiang,ZHANG Dongsheng,et al. The mechanism of bedding cracking and development laws of lateral fracture in overlying strata induced by longwall mining[J]. Journal of China Coal Society,2023,48(S2):527−541.
    [16]
    胡国忠,李康,许家林,等. 覆岩采动裂隙空间形态反演方法及在瓦斯抽采中的应用[J]. 煤炭学报,2023,48(2):750−762.

    HU Guozhong,LI Kang,XU Jialin,et al. Spatial morphology inversion method of mining-induced fractures of overburden and its application in gas drainage[J]. Journal of China Coal Society,2023,48(2):750−762.
    [17]
    张礼,齐庆新,张勇,等. 采动覆岩裂隙场三维形态特征及其渗透特性研究[J]. 采矿与安全工程学报,2021,38(4):695−705.

    ZHANG Li,QI Qingxin,ZHANG Yong,et al. Study on three-dimensional shape and permeability of mining-induced fractured field in overburden rock[J]. Journal of Mining & Safety Engineering,2021,38(4):695−705.
    [18]
    ZHAO P X,ZHUO R S,LI S G,et al. Fractal characteristics of methane migration channels in inclined coal seams[J]. Energy,2021,225:120127. doi: 10.1016/j.energy.2021.120127
    [19]
    赵鹏翔,卓日升,李树刚,等. 综采工作面瓦斯运移优势通道演化规律采高效应研究[J]. 采矿与安全工程学报,2019,36(4):848−856.

    ZHAO Pengxiang,ZHUO Risheng,LI Shugang,et al. Study on the mining height evolution law of the dominant channel of gas migration in fully mechanized mining face[J]. Journal of Mining & Safety Engineering,2019,36(4):848−856.
    [20]
    赵鹏翔,康新朋,李树刚,等. 卸压瓦斯运移区 “孔-巷” 协同抽采布置参数优化及高效抽采[J]. 煤炭科学技术,2022,50(2):137−146.

    ZHAO Pengxiang,KANG Xinpeng,LI Shugang,et al. Optimization of\ “hole-drift” collaborative drainage layout parameters and high efficient drainage in pressure relief gas migration area[J]. Coal Science and Technology,2022,50(2):137−146.
    [21]
    孟祥军,赵鹏翔,王绪友,等. 大倾角高瓦斯煤层采动覆岩 “三带” 微震监测及瓦斯抽采效果[J]. 煤炭科学技术,2022,50(1):177−185. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201017

    MENG Xiangjun,ZHAO Pengxiang,WANG Xuyou,et al. “Three zones” microseismic monitoring and analysis of gas drainage effect of overlying strata in gob of high dip high gas seam[J]. Coal Science and Technology,2022,50(1):177−185. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201017
    [22]
    蒋金泉,王普,郑朋强,等. 高位硬厚岩层下采动裂隙和支承应力演化特征及其对瓦斯运移的影响[J]. 采矿与安全工程学报,2017,34(4):624−631.

    JIANG Jinquan,WANG Pu,ZHENG Pengqiang,et al. Evolution characteristics of mining-induced fracture and abutment stress under high-position hard thick stratum and its effect on gas migration[J]. Journal of Mining & Safety Engineering,2017,34(4):624−631.
    [23]
    FENG G R,HU S Y,LI Z,et al. Distribution of methane enrichment zone in abandoned coal mine and methane drainage by surface vertical boreholes:A case study from China[J]. Journal of Natural Gas Science and Engineering,2016,34:767−778. doi: 10.1016/j.jngse.2016.07.045
    [24]
    FENG G R,ZHANG A,HU S Y,et al. A methodology for determining the methane flow space in abandoned mine gobs and its application in methane drainage[J]. Fuel,2018,227:208−217. doi: 10.1016/j.fuel.2018.04.110
    [25]
    张开仲,程远平,王亮,等. 基于煤中瓦斯赋存和运移方式的孔隙网络结构特征表征[J]. 煤炭学报,2022,47(10):3680−3694.

    ZHANG Kaizhong,CHENG Yuanping,WANG Liang,et al. Pore network structure characterization based on gas occurrence and migration in coal[J]. Journal of China Coal Society,2022,47(10):3680−3694.
    [26]
    李树刚,刘李东,赵鹏翔,等. 倾斜厚煤层卸压瓦斯靶向区辨识及抽采关键技术[J]. 煤炭科学技术,2023,51(8):105−115.

    LI Shugang,LIU Lidong,ZHAO Pengxiang,et al. Key technologies for extraction and identification of gas target area for pressure relief in inclined thick coal seam[J]. Coal Science and Technology,2023,51(8):105−115.
    [27]
    李树刚,刘李东,赵鹏翔,等. 综采工作面覆岩压实区裂隙动态演化规律影响因素分析[J]. 煤炭科学技术,2022,50(1):95−104. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201008

    LI Shugang,LIU Lidong,ZHAO Pengxiang,et al. Analysis and application of fracture evolution law of overburden compacted area on fully-mechanized mining face under multiple factors[J]. Coal Science and Technology,2022,50(1):95−104. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201008
    [28]
    李树刚,徐培耘,林海飞,等. 倾斜煤层卸压瓦斯导流抽采技术研究与工程实践[J]. 采矿与安全工程学报,2020,37(5):1001−1008.

    LI Shugang,XU Peiyun,LIN Haifei,et al. Technology research and engineering practice of pressure-relief gas diversion extraction in inclined coal seams[J]. Journal of Mining & Safety Engineering,2020,37(5):1001−1008.
    [29]
    郭文兵,娄高中,赵保才. 芦沟煤矿软硬交互覆岩放顶煤开采导水裂缝带高度研究[J]. 采矿与安全工程学报,2019,36(3):519−526.

    GUO Wenbing,LOU Gaozhong,ZHAO Baocai. Study on the height of water-conductive fracture zone in alternate overburden of soft and hard with top coal caving mining in Lugou coal mine[J]. Journal of Mining & Safety Engineering,2019,36(3):519−526.
    [30]
    李树刚,赵波,赵鹏翔,等. 煤岩瓦斯固气耦合相似材料瓦斯吸附特性研究[J]. 采矿与安全工程学报,2019,36(3):634−642.

    LI Shugang,ZHAO Bo,ZHAO Pengxiang,et al. Gas adsorption characteristics of similar materials with solid and gas couple of coal and gas[J]. Journal of Mining & Safety Engineering,2019,36(3):634−642.
    [31]
    刘奇,笪雨欣,曹广勇,等. 裂隙发育过程对采动裂隙椭抛带压实区的影响研究[J]. 煤炭科学技术,2024,52(5):25−35.

    LIU Qi,DA Yuxin,CAO Guangyong,et al. Study on the influence of frature development process on the compation area of overlying strata in working face[J]. Coal science and Technology,2024,52(5):25−35.
    [32]
    侯恩科,陈育,车晓阳,等. 浅埋煤层过沟开采覆岩破坏特征及裂隙演化规律研究[J]. 煤炭科学技术,2021,49(10):185−192.

    HOU Enke,CHEN Yu,CHE Xiaoyang,et al. Study on overburden failure characteristics and fracture evolution law of shallow buried coal seam through trench mining[J]. Coal Science and Technology,2021,49(10):185−192.
    [33]
    黄炳香,刘长友,许家林. 采动覆岩破断裂隙的贯通度研究[J]. 中国矿业大学学报,2010,39(1):45−49.

    HUANG Bingxiang,LIU Changyou,XU Jialin. Research on through degree of overlying strata fracture fissure induced by mining[J]. Journal of China University of Mining & Technology,2010,39(1):45−49.
    [34]
    赵鹏翔,张文进,李树刚,等. 高瓦斯厚煤层综采工作面推进速度影响下的瓦斯运-储区交叉融合机理[J]. 煤炭学报,2023,48(9):3405−3419.

    ZHAO Pengxiang,ZHANG Wenjin,LI Shugang,et al. Mechanism of cross-fusion in gas transportation-storage area in fully mechanized mining face of high gas thick coal seam under different advancing speeds[J]. Journal of China Coal Society,2023,48(9):3405−3419.
    [35]
    杨滨滨,袁世冲,郑德志,等. 近距离煤层重复采动覆岩裂隙时空演化特征研究[J]. 采矿与安全工程学报,2022,39(2):255−263.

    YANG Binbin,YUAN Shichong,ZHENG Dezhi,et al. Spatial and temporal characteristics of overburden fractures due to repeated mining in close distance coal seams[J]. Journal of Mining & Safety Engineering,2022,39(2):255−263.

Catalog

    Article views (54) PDF downloads (21) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return