Citation: | XU Qiang,GUO Hongyu,ZHANG Minglu,et al. Variation characteristics of substrate and flora metabolism associated with co-fermentation of coal and corn straw[J]. Coal Science and Technology,2024,52(S1):322−331. DOI: 10.12438/cst.2024-0260 |
Adding corn straw to the anaerobic fermentation system of coal can significantly increase the gas production of coal-to-biomethane. However, the changes in substrate and microbial metabolism accompanying this combined fermentation are rarely studied. The Scanning Electron Microscope (SEM) test was utilized to analyze the microbial adhesion characteristics of coal and corn straw, while the X-ray Photoelectron Spectroscopy (XPS) test examined the changes in surface elements of coal. The results indicated that the optimal ratios of lean coal, weakly caking coal, and coking coal to corn straw were 2∶1, 2∶1, and 3∶1, respectively, and the corresponding methane yields were 17.28 mL/g, 12.51 mL/g, and 14.88 mL/g. The promotional effect of co-fermentation of different rank coal and straw was observed in the order of lean coal > coking coal > weakly caking coal. Microbial identification revealed that Sphaerochaeta and Proteiniphilum were the dominant bacterial genera in the mixed fermentation system, comprising 35.95% and 24.36% of the population, respectively. Additionally, Methanosarcina, Methanobacterium, and Methanoculleus emerged as the dominant archaea, constituting 49.71%, 31.83%, and 9.87%, respectively. In comparison with coking coal and weakly caking coal, the bacterial and archaeal genera, along with their associated gene functions responsible for carbohydrate metabolism in the combined fermentation broth of lean coal, coking coal, and weakly caking coal, were found to be dominant. This observation aligns with the principles governing methane production. Notably, in mixed substrate fermentation, as coal rank increased, bacterial presence on the coal surface gradually declined, while a substantial bacterial population consistently adhered to the surface of corn straw, indicating the latter's sustained advantage in degradation. After co-fermentation, the relative content of C element on the surface of coking coal and weakly caking coal decreased more significantly than that of lean coal, while the total relative content of oxygen-containing organic carbon ( C—O, C=O and O—C=O ) increased significantly, indicating that co-fermentation can promote the growth and metabolism of bacteria, so that more organic carbon can be converted into biological methane. The research results identified the effect of co-fermentation of different rank coal and corn straw at the micro level, which has reference significance for revealing the internal mechanism of co-fermentation of coal and corn straw.
[1] |
皇甫燕燕,刘向荣,石晨,等. 煤泥不同预处理方式对其微生物降解过程的影响研究[J]. 煤炭转化,2023,46(3):81−91.
HUANGFU Yanyan,LIU Xiangrong,SHI Chen,et al. Study on the influences of different pretreatment methods of coal slime on their microbial degradation processes[J]. Coal Conversion,2023,46(3):81−91.
|
[2] |
GUO Hongguang,ZHANG Yujie,ZHANG Yiwen ,et al. Feasibility study of enhanced biogenic coalbed methane production by super-critical CO2 extraction[J]. Energy,2021,214:118935.
|
[3] |
ZHANG Dan,HE Huan,REC Yi,et al. A mini review on biotransformation of coal to methane by enhancement of chemical pretreatment[J]. Fuel,2022,308:121961. doi: 10.1016/j.fuel.2021.121961
|
[4] |
张怀文,黄松,闫夏彤,等. 白腐真菌预处理对煤厌氧发酵产甲烷的影响[J]. 煤田地质与勘探,2020,48(2):120−125. doi: 10.3969/j.issn.1001-1986.2020.02.019
ZHANG Huaiwen,HUANG Song,YAN Xiatong,et al. Effect of white rot fungi pretreatment on methane production from anaerobic fermentation of coal[J]. Coal Geology & Exploration,2020,48(2):120−125. doi: 10.3969/j.issn.1001-1986.2020.02.019
|
[5] |
苏现波,陈鑫,夏大平,等. 煤发酵制生物氢和甲烷的模拟实验[J]. 天然气工业,2014,34(5):179−185.
SU Xianbo,CHEN Xin,XIA Daping,et al. An experimental study of hydrogen and methane production from fermentation of coal[J]. Natural Gas Industry,2014,34(5):179−185.
|
[6] |
郭红玉,宋博,邓泽,等. 废弃油脂促进褐煤转化生物甲烷效果与机理[J]. 煤炭学报,2023,48(6):2431−2440.
GUO Hongyu,SONG Bo,DENG Ze,et al. Effect and mechanism of biomethane conversion from lignite promoted by waste oil[J]. Journal of China Coal Society,2023,48(6):2431−2440.
|
[7] |
苏佳纯,肖钢. 利用微生物促进煤层间CO2甲烷化的新方法[J]. 煤炭转化,2013,36(4):90−93. doi: 10.3969/j.issn.1004-4248.2013.04.020
SU Jiachun,XIAO Gang. A proposed pathway to stimulate biogenic methane production from coal and injected carbon dioxide[J]. Coal Conversion,2013,36(4):90−93. doi: 10.3969/j.issn.1004-4248.2013.04.020
|
[8] |
孙斌,李金珊,承磊,等. 低阶煤生物采气可行性-以二连盆地吉尔嘎朗图凹陷为例[J]. 石油学报,2018,39(11):1272−1278. doi: 10.7623/syxb201811007
SUN Bin,LI Jinshan,CHENG Lei,et al. The feasibility of biological gas recovery in low-rank coal:a case study of Jiergalangtu depression in Erlian Basin[J]. Acta Petrolei Sinica,2018,39(11):1272−1278. doi: 10.7623/syxb201811007
|
[9] |
宋金星,郭红玉,陈山来,等. 煤中显微组分对生物甲烷代谢的控制效应[J]. 天然气工业,2016,36(5):25−30. doi: 10.3787/j.issn.1000-0976.2016.05.003
SONG Jinxing,GUO Hongyu,CHEN Shanlai,et al. Control effects of coal maceral composition on the metabolism of biogenic methane[J]. Natural Gas Industry,2016,36(5):25−30. doi: 10.3787/j.issn.1000-0976.2016.05.003
|
[10] |
ZHANG Weiting,HUANG Zaixing,ZHANG Dan,et al. Enhancement of biomethane production by huminite-enriched lignite pretreated with hydrogen peroxide[J]. International Journal of Coal Geology,2023,274:104284 doi: 10.1016/j.coal.2023.104284
|
[11] |
张攀攀,郭红光,段凯鑫,等. 无烟煤厌氧代谢产物对其纳米孔隙的影响[J]. 煤炭学报,2020,45(11):3841−3852.
ZHANG Panpan,GUO Hongguang,DUAN Kaixin,et al. Effects of microbial anaerobic metabolites on nanoporosity of anthracite[J]. Journal of China Coal Society,2020,45(11):3841−3852.
|
[12] |
田慎重,郭洪海,姚利,等. 中国种养业废弃物肥料化利用发展分析[J]. 农业工程学报,2018,34(S1):123−131.
TIAN Shenzhong,GUO Honghai,YAO Li,et al. Development analysis for fertilizer utilization of agricultural planting and animal wastes in China[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(S1):123−131.
|
[13] |
GU Yu,ZHANG Yalei,ZHOU Xuefei. Effect of Ca(OH)2 pretreatment on extruded rice straw anaerobic digestion[J]. Bioresource Technology,2015,196:116−122. doi: 10.1016/j.biortech.2015.07.004
|
[14] |
XIONG Yankun,JIN Lijun,YANG He,et al. Insight into the aromatic ring structures of a low-rank coal by step-wise oxidation degradation[J]. Fuel Processing Technology,2020,210:106563. doi: 10.1016/j.fuproc.2020.106563
|
[15] |
HAZRIN-CHONG Nurhazlin,DAS Theerthankar,MANEFIELD Michael. Surface physico-chemistry governing microbial cell attachment and biofilm formation on coal[J]. International Journal of Coal Geology,2020,236:103671.
|
[16] |
赵娜,韩作颖. 微生物降解褐煤产气实验研究[J]. 煤炭转化,2019,42(3):49−54.
ZHAO Na,HAN Zuoying. Study on gas production of lignite degraded by microorganisms[J]. Coal Conversion,2019,42(3):49−54.
|
[17] |
苏现波,汪露飞,赵伟仲,等. 超临界CO2参与下煤储层原位微生物甲烷化物理模拟研究[J]. 煤田地质与勘探,2022,50(3):119−126. doi: 10.12363/issn.1001-1986.21.11.0684
SU Xianbo,WANG Lufei,ZHAO Weizhong,et al. Physical simulation of in-situ microbial methanation in coal reservoirs with the participation of supercritical CO2[J]. Coal Geology & Exploration,2022,50(3):119−126. doi: 10.12363/issn.1001-1986.21.11.0684
|
[18] |
RITALAHTI Kirsti,JUSTICIALEON Shandra D,CUSICK Kathleen D,et al. Sphaerochaeta globosa gen. nov. sp. nov. and Sphaerochaeta pleomorpha sp. nov. free-living,spherical spirochaetes[J]. International Journal of Systematic & Evolutionary Microbiology,2012,62(1):210−216.
|
[19] |
CHEN Shuangya,DONG Xiuzhu. Proteiniphilum acetatigenes gen. nov. sp. nov. from a UASB reactor treating brewery wastewater[J]. International Journal of Systematic and Evolutionary Microbiology,2005,55(6):2257−2261. doi: 10.1099/ijs.0.63807-0
|
[20] |
QIU Yanling,KUANG Xiaozhu,SHI Xiaoshuang,et al. Paludibacter jiangxiensis sp. nov. a strictly anaerobic,propionate-producing bacterium isolated from rice paddy field[J]. Archives of Microbiology,2014,196(3):149−155. doi: 10.1007/s00203-013-0951-1
|
[21] |
DEPPENMEIER Uwe,JOHANN Andre,HARTSCH Thomas. The genome of Methanosarcina mazei:evidence for lateral gene transfer between bacteria and archaea[J]. Journal of Molecular Microbiology & Biotechnology,2002,4(4):453.
|
[22] |
MA Kai,LIU Xiaoli,DONG Xiuzhu. Methanobacterium beijingense sp. nov. a novel methanogen isolated from anaerobic digesters[J]. International Journal of Systematic & Evolutionary Microbiology,2005,55(1):325−329.
|
[23] |
USMAN Muhammad,SHI Zhijian,JI Mengyuan,et al. Microbial insights towards understanding the role of hydrochar in alleviating ammonia inhibition during anaerobic digestion[J]. Chemical Engineering Journal,2021,419:129541 doi: 10.1016/j.cej.2021.129541
|
[24] |
SHARMA P K,RAO K Hanumantha. Analysis of different approaches for evaluation of surface energy of microbial cells by contact angle goniometry[J]. Advances in Colloid and Interface Science,2002,98(3):341−463. doi: 10.1016/S0001-8686(02)00004-0
|
[25] |
NGUYEN Vi,KARUNAKARAN Esther,COLLINS Gavin,et al. Physicochemical analysis of initial adhesion and biofilm formation of Methanosarcina barkeri on polymer support material[J]. Colloids and Surfaces B-Biointerfaces,2016,143:518−525. doi: 10.1016/j.colsurfb.2016.03.042
|
[26] |
GUO Hongyu,DONG Zhiwei,LIU Xiaolei,et al. Analysis of methanogens adsorption and biogas production characteristics from different coal surfaces[J]. Environmental Science and Pollution Research,2018,26(14):13825−13832.
|
[27] |
SHAO Pei,WANG Aikuan,WANG Wenfeng. Effect of chemical structure of lignite and high-volatile bituminous coal on the generation of biogenic coalbed methane[J]. Fuel,2019,245:212−225. doi: 10.1016/j.fuel.2019.02.061
|
1. |
邓勇军. 特厚煤层留小煤柱沿空掘巷切顶卸压关键参数研究. 煤. 2025(01): 32-37 .
![]() | |
2. |
陈晓伟,陈雷,李猛,胡成军,宋磊,袁鹏喆. 一种长巷道形变监测中轴线提取及断面构建方法. 工矿自动化. 2024(02): 35-41 .
![]() | |
3. |
刘少伟,李小鹏,朱雯清,付孟雄,张定山,彭博. 沿空留巷密集钻孔切顶机理及关键参数确定方法. 煤炭科学技术. 2024(02): 23-33 .
![]() | |
4. |
史卫平,李照迎,柳昌涛,吕艳伟,张浩然,杨涛. 倾斜煤层厚硬顶板切顶留巷关键参数优化研究. 煤炭科学技术. 2024(05): 11-24 .
![]() | |
5. |
卞毅,李方见,赵浩浩,吉升阳. 切顶卸压爆破技术在沿空留巷中的应用. 陕西煤炭. 2024(09): 123-126+172 .
![]() | |
6. |
盛磊. 窄煤柱沿空巷道切顶卸压护巷技术应用. 自动化应用. 2024(18): 131-133 .
![]() | |
7. |
王力,刘海胜,齐晓华,马云,缑凯. 侧压系数效应下钻孔孔周力学响应特征. 煤矿机电. 2024(04): 57-61 .
![]() | |
8. |
郭帅,刘旭耀,张东杰,王成帅. 坚硬顶板沿空留巷支——卸协同围岩控制技术研究. 金属矿山. 2024(12): 88-95 .
![]() | |
9. |
王飞,王绪强,石新禹,许慧聪. 厚直接顶作用下切顶深度对沿空留巷稳定性影响分析. 工矿自动化. 2024(12): 59-66 .
![]() | |
10. |
覃疏捷,张自政,徐世强,罗佳豪,孙旭鹏. 密集钻孔切顶卸压沿空留巷技术研究与应用. 矿业工程研究. 2024(04): 26-32 .
![]() |