Loading [MathJax]/jax/output/SVG/jax.js
Advance Search
TANG Chunlei,YANG Wenxiu,LIANG Yongping,et al. Structure characteristics of microbial community in acid mine drainage in Shandi River Basin[J]. Coal Science and Technology,2025,53(5):437−450. DOI: 10.12438/cst.2024-0259
Citation: TANG Chunlei,YANG Wenxiu,LIANG Yongping,et al. Structure characteristics of microbial community in acid mine drainage in Shandi River Basin[J]. Coal Science and Technology,2025,53(5):437−450. DOI: 10.12438/cst.2024-0259

Structure characteristics of microbial community in acid mine drainage in Shandi River Basin

More Information
  • Received Date: February 28, 2024
  • Available Online: May 19, 2025
  • In order to reveal the structural characteristics of microbial communities in acid mine drainage(AMD) under different redox environmental conditions and the interaction between microbial communities and groundwater environment, Select the typical abandoned coal mining area in the Shandi River basin of the Niangziguan Spring area, and collect AMD samples from different redox environments for Hydrochemical characteristics and isotope analysis and the high-throughput sequencing of the V4, V5 region of microbial 16S rRNA. The analysis of Hydrochemical characteristics and isotope indicates that the hydrochemical characteristics of AMD are mainly influenced by pH and surrounding rock. The analysis of hydrochemical isotopes shows that the hydrochemical characteristics of AMD are mainly influenced by pH and rock water interaction. Under aerobic and anaerobic environments, the pH of AMD is negatively correlated with Eh; The pH of AMD in anaerobic and hypoxic environments is negatively correlated with Fe3+and Eh.The Ca and Mg ions in AMD mainly come from the dissolution of calcite and dolomite in the surrounding rock and coal. The K and Na ions in AMD mainly come from the dissolution of silicate rocks such as feldspar under acidic conditions; The main source of SO24 and Fe content in AMD is the oxidation of pyrite in coal-bearing strata; The sulfur isotope evolution of AMD is characterized by lower δ34S–SO24 values in aerobic environments and higher δ34S–SO24 values in anaerobic and hypoxic environments. The analysis of the microbial diversity impact of AMD in the bottom of the mountain basin shows that the lower the pH, the lower the bacterial abundance and diversity of the sample; The higher the temperature, the higher the bacterial abundance and diversity of the sample. Through the correlation analysis between the microbial community and environmental factors of AMD, it was found that the dominant bacterial genera in the Liugou are Ferrovum, Gallionella and Ferritrophicum. The dominant genera of AMD in the Miaogou open-pit mine are Ferrovum, Gallionella and Acidithiobacillus. The dominant genera of AMD in Yulinnao drilling are Ferrovum and Gallionella. The microbial community of AMD in the Shandi River Basin is greatly affected by pH, temperature and precipitation.

  • [1]
    BALDI F,CLARK T,POLLACK S S,et al. Leaching of pyrites of various reactivities by thiobacillus ferrooxidans[J]. Applied and Environmental Microbiology,1992,58(6):1853−1856. doi: 10.1128/aem.58.6.1853-1856.1992
    [2]
    SASAKI K,TSUNEKAWA M,OHTSUKA T,et al. The role of sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1998,133(3):269−278.
    [3]
    盛益之. 酸性矿井水环境中Fe(Ⅱ)的氧化和微生物多样性研究[D]. 北京:中国地质大学(北京),2016.

    SHENG Yizhi. Low-pH Fe(Ⅱ) oxidation and microbial diversity in acid mine drainage environments[D]. Beijing:China University of Geosciences,2016.
    [4]
    ZHANG X,NIU J J,LIANG Y L,et al. Metagenome-scale analysis yields insights into the structure and function of microbial communities in a copper bioleaching heap[J]. BMC Genetics,2016,17(1):1−12. doi: 10.1186/s12881-015-0265-z
    [5]
    HAO C B,WEI P F,PEI L X,et al. Significant seasonal variations of microbial community in an acid mine drainage lake in Anhui Province,China[J]. Environmental Pollution,2017,223:507−516. doi: 10.1016/j.envpol.2017.01.052
    [6]
    ETTAMIMI S,CARLIER J D,COX C J,et al. A meta-taxonomic investigation of the prokaryotic diversity of water bodies impacted by acid mine drainage from the São Domingos mine in southern Portugal[J]. Extremophiles,2019,23(6):821−834. doi: 10.1007/s00792-019-01136-1
    [7]
    MÉNDEZ-GARCÍA C,PELÁEZ A I,MESA V,et al. Microbial diversity and metabolic networks in acid mine drainage habitats[J]. Frontiers in Microbiology,2015,6:475.
    [8]
    孙亚军,张莉,徐智敏,等. 煤矿区矿井水水质形成与演化的多场作用机制及研究进展[J]. 煤炭学报,2022,47(1):423−437.

    SUN Yajun,ZHANG Li,XU Zhimin,et al. Multi-field action mechanism and research progress of coal mine water quality formation and evolution[J]. Journal of China Coal Society,2022,47(1):423−437.
    [9]
    肖升木,谢学辉,柳建设,等. 矿物培养影响微生物群落的ERIC研究[J]. 高校地质学报,2007,13(4):662−668. doi: 10.3969/j.issn.1006-7493.2007.04.008

    XIAO Shengmu,XIE Xuehui,LIU Jianshe,et al. Study on the changes of microbial ecology with ERIC method after cultivation by different mineral resources[J]. Geological Journal of China Universities,2007,13(4):662−668. doi: 10.3969/j.issn.1006-7493.2007.04.008
    [10]
    BAKER B J,LUTZ M A,DAWSON S C,et al. Metabolically active eukaryotic communities in extremely acidic mine drainage[J]. Applied and Environmental Microbiology,2004,70(10):6264−6271. doi: 10.1128/AEM.70.10.6264-6271.2004
    [11]
    陈迪. 高硫煤废弃矿井微生物群落演替规律及铁硫代谢基因的功能预测[D]. 徐州:中国矿业大学,2020.

    CHEN Di. Succession rule of microbial community and functional prediction of iron-sulfur metabolic genes in high-sulfur abandoned coal mines[D]. Xuzhou:China University of Mining and Technology,2020.
    [12]
    DRUSCHEL G K,BAKER B J,GIHRING T M,et al. Acid mine drainage biogeochemistry at iron mountain,California[J]. Geochemical Transactions,2004,5(2):13. doi: 10.1186/1467-4866-5-13
    [13]
    LIU Y C,DONG Q,WU C,et al. Study of the succession of microbial communities for sulfur cycle response to ecological factors change in sediment of sewage system[J]. Environmental Science and Pollution Research,2015,22(12):9250−9259. doi: 10.1007/s11356-014-3934-0
    [14]
    吕保义,谢建云,郑喻,等. 稀土尾矿库周边地下水微生物的群落多样性研究[J]. 环境工程,2015,33(S1):101−104,116.

    LYU Baoyi ,XIE Jianyun ,ZHENG Yu,et al. Study on microbial biodiversity in the groundwater around tailings of rare earth[J]. Environmental Engineering,2015,33(S1):101−104,116.
    [15]
    唐春雷,梁永平,晋华,等. 山底河流域煤矿酸性矿井水野外监测[J]. 中国岩溶,2022,41(4):522−531. doi: 10.11932/karst20220402

    TANG Chunlei,LIANG Yongping,JIN Hua,et al. Overview of field monitoring for acid mine water system of the coal mine in Shandi river basin[J]. Carsologica Sinica,2022,41(4):522−531. doi: 10.11932/karst20220402
    [16]
    石维芝,赵春红,梁永平,等. 煤矿酸性“老窑水”低Ca/Mg成因机制[J]. 中国岩溶,2022,41(4):511−521. doi: 10.11932/karst2022y10

    SHI Weizhi ,ZHAO Chunhong ,LIANG Yongping ,et al. Genetic mechanism analysis of low Ca/Mg value of acid goaf water in coal mine drainage[J]. Carsologica Sinica,2022,41(4):511−521. doi: 10.11932/karst2022y10
    [17]
    唐春雷,梁永平,晋华,等. 山西娘子关泉群及其水的来源[J]. 中国岩溶,2022,41(2):174−182. doi: 10.11932/karst20220201

    TANG Chunlei,LIANG Yongping,JIN Hua,et al. Niangziguan spring group in Shanxi Province and its water source[J]. Carsologica Sinica,2022,41(2):174−182. doi: 10.11932/karst20220201
    [18]
    唐春雷,申豪勇,赵春红,等. 古堆泉域岩溶地下水水化学特征及成因[J]. 环境科学,2023,44(9):4874−4883.

    TANG Chunlei,SHEN Haoyong,ZHAO Chunhong,et al. Hydrochemical characteristics and formation causes of ground karst water systems in Gudui spring catchment[J]. Environmental Science,2023,44(9):4874−4883.
    [19]
    赵春红,梁永平,卢海平,等. 娘子关泉域岩溶水 SO24δ34S特征及其环境意义[J]. 中国岩溶,2019,38(6):867−875. doi: 10.11932/karst20190604

    ZHAO Chunhong,LIANG Yongping,LU Haiping,et al. Chemical characteristics and environmental significance of SO24 and sulfur isotope in the karst watershed of the Niangziguan spring,Shanxi Province[J]. Carsologica Sinica,2019,38(6):867−875. doi: 10.11932/karst20190604
    [20]
    梁永平,申豪勇,赵春红,等. 对中国北方岩溶水研究方向的思考与实践[J]. 中国岩溶,2021,40(3):363−380.

    LIANG Yongping,SHEN Haoyong,ZHAO Chunhong,et al. Thinking and practice on the research direction of karst water in northern China[J]. Carsologica Sinica,2021,40(3):363−380.
    [21]
    梁永平,赵春红,唐春雷,等. 山西娘子关泉水及污染成因再分析[J]. 中国岩溶,2017,36(5):633−640.

    LIANG Yongping,ZHAO Chunhong,TANG Chunlei,et al. Reanalysis of spring water and its pollution causes of the Niangziguan spring in Shanxi[J]. Carsologica Sinica,2017,36(5):633−640.
    [22]
    胡晓兵,方健聪,翟虎威,等. 硫氧同位素在识别辛安泉域岩溶水 SO24来源中的应用[J]. 地质科技通报,2022,41(5):333−340.

    HU Xiaobing ,FANG Jiancong ,ZHAI Huwei ,et al. Application of sulfur and oxygen isotopes in identifying the source of sulfate in karst water from Xinan spring area[J]. Bulletin of Geological Science and Technology,2022,41(5):333−340.
    [23]
    REN K,ZENG J,LIANG J P,et al. Impacts of acid mine drainage on karst aquifers:Evidence from hydrogeochemistry,stable sulfur and oxygen isotopes[J]. Science of The Total Environment,2021,761:143223. doi: 10.1016/j.scitotenv.2020.143223
    [24]
    唐春雷,梁永平,王维泰,等. 龙子祠泉域岩溶水水化学−同位素特征[J]. 桂林理工大学学报,2017,37(1):53−58. doi: 10.3969/j.issn.1674-9057.2017.01.007

    TANG Chunlei,LIANG Yongping,WANG Weitai,et al. Hydrogeochemical and isotopic characteristics of the karst groundwater systems in Longzici spring basin[J]. Journal of Guilin University of Technology,2017,37(1):53−58. doi: 10.3969/j.issn.1674-9057.2017.01.007
    [25]
    唐春雷,赵春红,申豪勇,等. 娘子关泉群水化学特征及成因[J]. 环境科学,2021,42(3):1416−1423.

    TANG Chunlei,ZHAO Chunhong,SHEN Haoyong,et al. Chemical characteristics and causes of groups water in Niangziguan spring[J]. Environmental Science,2021,42(3):1416−1423.
    [26]
    ULLRICH S R,POEHLEIN A,LEVICÁN G,et al. Iron targeted transcriptome study draws attention to novel redox protein candidates involved in ferrous iron oxidation in “Ferrovum” sp. JA12[J]. Research in Microbiology,2018,169(10):618−627. doi: 10.1016/j.resmic.2018.05.009
    [27]
    LIN H,TANG Y L,DONG Y B,et al. Characterization of heavy metal migration,the microbial community,and potential bioremediating Genera in a waste-rock pile field of the largest copper mine in Asia[J]. Journal of Cleaner Production,2022,351:131569. doi: 10.1016/j.jclepro.2022.131569
    [28]
    WATANABE T,KATAYANAGI N,AGBISIT R,et al. Influence of alternate wetting and drying water-saving irrigation practice on the dynamics of Gallionella-related iron-oxidizing bacterial community in paddy field soil[J]. Soil Biology and Biochemistry,2021,152:108064. doi: 10.1016/j.soilbio.2020.108064
    [29]
    LI Y Y,LIU L,WANG H J. Mixotrophic denitrification for enhancing nitrogen removal of municipal tailwater:Contribution of heterotrophic/sulfur autotrophic denitrification and bacterial community[J]. Science of The Total Environment,2022,814:151940. doi: 10.1016/j.scitotenv.2021.151940
    [30]
    WANG Y F,WU G X,ZHENG X N,et al. Synergistic ammonia and nitrate removal in a novel pyrite-driven autotrophic denitrification biofilter[J]. Bioresource Technology,2022,355:127223. doi: 10.1016/j.biortech.2022.127223
    [31]
    LIN Z Q,PANG S M,ZHOU Z,et al. Novel pathway of acephate degradation by the microbial consortium ZQ01 and its potential for environmental bioremediation[J]. Journal of Hazardous Materials,2022,426:127841. doi: 10.1016/j.jhazmat.2021.127841
    [32]
    MURAVYOV M,PANYUSHKINA A,FOMCHENKO N. Effect of copper/nickel ratio on the efficiency of biobeneficiation of bulk copper-nickel sulfide concentrates[J]. Minerals Engineering,2022,182:107586. doi: 10.1016/j.mineng.2022.107586
    [33]
    BAO Y P,GUO C L,WANG H,et al. Fe- and S-metabolizing microbial communities dominate an AMD-contaminated river ecosystem and play important roles in Fe and S cycling[J]. Geomicrobiology Journal,2017,34(8):695−705. doi: 10.1080/01490451.2016.1243596
    [34]
    ORMEÑO-ORRILLO E,MARTÍNEZ-ROMERO E. A genomotaxonomy view of the Bradyrhizobium genus[J]. Frontiers in Microbiology,2019,10:1334. doi: 10.3389/fmicb.2019.01334
    [35]
    LI A H,LIU H C,HOU W G,et al. Pseudorhodobacter sinensis sp. nov. and Pseudorhodobacter aquaticus sp. nov. ,isolated from crater lakes[J]. International Journal of Systematic and Evolutionary Microbiology,2016,66(8):2819−2824. doi: 10.1099/ijsem.0.001061
    [36]
    YAN Z Z,MENG H J,ZHANG Q Q,et al. Effects of cadmium and flooding on the formation of iron plaques,the rhizosphere bacterial community structure,and root exudates in Kandelia obovata seedlings[J]. Science of The Total Environment,2022,851:158190. doi: 10.1016/j.scitotenv.2022.158190
    [37]
    CLYDE E J,CHAMPAGNE P,JAMIESON H E,et al. The use of a passive treatment system for the mitigation of acid mine drainage at the Williams Brothers Mine (California):Pilot-scale study[J]. Journal of Cleaner Production,2016,130:116−125. doi: 10.1016/j.jclepro.2016.03.145
    [38]
    OTHMAN A,SULAIMAN A,SULAIMAN S K. Carbide lime in acid mine drainage treatment[J]. Journal of Water Process Engineering,2017,15:31−36. doi: 10.1016/j.jwpe.2016.06.006
    [39]
    NAICKER K,CUKROWSKA E,MCCARTHY T S. Acid mine drainage arising from gold mining activity in Johannesburg,South Africa and environs[J]. Environmental Pollution,2003,122(1):29−40. doi: 10.1016/S0269-7491(02)00281-6
    [40]
    赵峰华. 煤矿酸性水地球化学[M]. 北京:煤炭工业出版社,2005.
    [41]
    岳梅,赵峰华,任德贻. 煤矿酸性水水化学特征及其环境地球化学信息研究[J]. 煤田地质与勘探,2004,32(3):46−49. doi: 10.3969/j.issn.1001-1986.2004.03.016

    YUE Mei,ZHAO Fenghua,REN Deyi. The environment geochemistry information of the coal mine acid mining drainage[J]. Coal Geology & Exploration,2004,32(3):46−49. doi: 10.3969/j.issn.1001-1986.2004.03.016
    [42]
    SIMATE G S,NDLOVU S. Acid mine drainage:Challenges and opportunities[J]. Journal of Environmental Chemical Engineering,2014,2(3):1785−1803. doi: 10.1016/j.jece.2014.07.021
    [43]
    RODRÍGUEZ-GALÁN M,BAENA-MORENO F M,VÁZQUEZ S,et al. Remediation of acid mine drainage[J]. Environmental Chemistry Letters,2019,17(4):1529−1538. doi: 10.1007/s10311-019-00894-w
    [44]
    LUO Z H,LI Q,CHEN N,et al. Genome-resolved metagenomics reveals depth-related patterns of microbial community structure and functions in a highly stratified,AMD overlaying mine tailings[J]. Journal of Hazardous Materials,2023,447:130774. doi: 10.1016/j.jhazmat.2023.130774
    [45]
    YANG D,FAN R,GREET C,et al. Microfluidic screening to study acid mine drainage[J]. Environmental Science & Technology,2020,54(21):14000−14006.
    [46]
    HUANG Y,LI X T,JIANG Z,et al. Key factors governing microbial community in extremely acidic mine drainage (pH<3)[J]. Frontiers in Microbiology,2021,12:761579. doi: 10.3389/fmicb.2021.761579
    [47]
    SHE Z X,PAN X,WANG J,et al. Vertical environmental gradient drives prokaryotic microbial community assembly and species coexistence in a stratified acid mine drainage lake[J]. Water Research,2021,206:117739. doi: 10.1016/j.watres.2021.117739
    [48]
    CHEN J J,LIU Y L,DIEP P,et al. Genomic analysis of a newly isolated acidithiobacillus ferridurans JAGS strain reveals its adaptation to acid mine drainage[J]. Minerals,2021,11(1):74. doi: 10.3390/min11010074
    [49]
    JIN D C,WANG X M,LIU L L,et al. A novel approach for treating acid mine drainage through forming schwertmannite driven by a mixed culture of Acidiphilium multivorum and Acidithiobacillus ferrooxidans prior to lime neutralization[J]. Journal of Hazardous Materials,2020,400:123108. doi: 10.1016/j.jhazmat.2020.123108
    [50]
    BOND P L,DRUSCHEL G K,BANFIELD J F. Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems[J]. Applied and Environmental Microbiology,2000,66(11):4962−4971. doi: 10.1128/AEM.66.11.4962-4971.2000
    [51]
    高旭波,潘振东,龚培俐,等. 微生物诱导碳酸盐岩沉淀过程及作用机理[J]. 中国岩溶,2022,41(3):441−452. doi: 10.11932/karst20220311

    GAO Xubo ,PAN Zhendong ,GONG Peili ,et al. Process and mechanism of microbial induced carbonate precipitation[J]. Carsologica Sinica,2022,41(3):441−452. doi: 10.11932/karst20220311
    [52]
    KUANG J L,HUANG L N,CHEN L X,et al. Contemporary environmental variation determines microbial diversity patterns in acid mine drainage[J]. The ISME Journal,2012,7(5):1038−1050.
    [53]
    WANG M M,WANG X N,ZHOU S N,et al. Strong succession in prokaryotic association networks and community assembly mechanisms in an acid mine drainage-impacted riverine ecosystem[J]. Water Research,2023,243:120343. doi: 10.1016/j.watres.2023.120343

Catalog

    Article views (30) PDF downloads (11) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return