Advance Search
LI Man,SHEN Siyi,LIU Junqi,et al. Research and design of sensor system for all position and attitude measurement of shearer[J]. Coal Science and Technology,2025,53(S1):378−388. DOI: 10.12438/cst.2024-0231
Citation: LI Man,SHEN Siyi,LIU Junqi,et al. Research and design of sensor system for all position and attitude measurement of shearer[J]. Coal Science and Technology,2025,53(S1):378−388. DOI: 10.12438/cst.2024-0231

Research and design of sensor system for all position and attitude measurement of shearer

More Information
  • Received Date: February 24, 2024
  • Available Online: May 14, 2025
  • The existing shearer body position, attitude, drum height and other measurements, there are insufficient methods and means, measurement device integration, integration, low degree of intelligence, poor information processing ability, high price. Firstly, based on the actual operation of shearer, the changing rules and influencing factors of fuselage attitude, position and drum height are analyzed, and the fuselage position solving model and drum height solving model considering fuselage attitude Angle are established. Secondly, aiming at multi-parameter measurement, a master-slave structure system is proposed, which consists of the attitude sensor, mileage sensor and left and right swing Angle sensor based on MEMS sensor chip with microprocessor as the core. Thirdly, the measurement method of each parameter is determined, and the hardware architecture and circuit of the three types of sensors are designed. The sensor uses DSP-F28335 as the main control chip, the fuselage attitude main sensor uses the MPU6050 inertial navigation chip as the measuring element, and the swing Angle and mileage of the rocker arm are measured by the TLE5012B Angle chip. Develop the program of sensor operation control, data acquisition and solution, communication and so on. Finally, the error of the prototype sensor system is measured through experiments, and the results show that: The average absolute errors of rotation Angle, roll Angle, pitch Angle, heading Angle, drum height, X-axis position and Y-axis position of the body are 0.06°, 0.02°, 0.03°, 0.15°, 1.45 mm, 2.64 mm and 3.43 mm, respectively. The average relative errors are 0.23%, 0.16% and 0.25%, respectively. 1.54%, 0.49%, 0.53%, 2.45%.

  • [1]
    王国法,杜毅博. 智慧煤矿与智能化开采技术的发展方向[J]. 煤炭科学技术,2019,47(1):1‒10.

    WANG Guofa,DU Yibo. Development direction of intelligent coal mine and intelligent mining technology[J]. Coal Science and Technology,2019,47(1):1‒10.
    [2]
    王国法,任怀伟,庞义辉,等. 煤矿智能化(初级阶段)技术体系研究与工程进展[J]. 煤炭科学技术,2020,48(7):1−27.

    WANG Guofa,REN Huaiwei,PANG Yihui,et al. Research and engineering progress of intelligent coal mine technical system in early stages[J]. Coal Science and Technology,2020,48(7):1−27.
    [3]
    邱锦波. 滚筒采煤机自动化与智能化控制技术发展及应用[J]. 煤炭科学技术,2013,41(11):10−13.

    QIU Jinbo. Development and application of shearer automation and intelligent control technology[J]. Coal Science and Technology,2013,41(11):10−13.
    [4]
    郄岩伟. 矿井采煤机结构动态振动特性研究[J]. 机械管理开发,2021,36(3):115−117.

    XI Yanwei. Analysis of dynamic vibration characteristics of mine shearer structure[J]. Mechanical Management and Development,2021,36(3):115−117.
    [5]
    杨宏飞. 综采工作面综合防尘技术研究[J]. 山西能源学院学报,2021,34(5):11−13. doi: 10.3969/j.issn.1008-8881.2021.05.005

    YANG Hongfei. Research on comprehensive dust prevention technology of fully mechanized mining face[J]. Journal of Shanxi Institute of Energy,2021,34(5):11−13. doi: 10.3969/j.issn.1008-8881.2021.05.005
    [6]
    张斌,方新秋,邹永洺,等. 基于陀螺仪和里程计的无人工作面采煤机自主定位系统[J]. 矿山机械,2010,38(9):10−13.

    ZHANG Bin,FANG Xinqiu,ZOU Yongming,et al. Auto-positioning system of shearer operating on manless working face based on gyroscope and odometer[J]. Mining & Processing Equipment,2010,38(9):10−13.
    [7]
    石金龙,马宏伟,毛清华,等. “惯导+里程计” 的采煤机定位方法研究[J]. 煤炭工程,2021,53(10):143−147.

    SHI Jinlong,MA Hongwei,MAO Qinghua,et al. Positioning method of shearer based on “SINS+OD”[J]. Coal Engineering,2021,53(10):143−147.
    [8]
    刘清,魏文艳. 基于红外检测装置的采煤机定位算法研究[J]. 机械工程与自动化,2013(6):157−159. doi: 10.3969/j.issn.1672-6413.2013.06.065

    LIU Qing,WEI Wenyan. Shearer localization algorithm based on position detection of shearer by infrared[J]. Mechanical Engineering & Automation,2013(6):157−159. doi: 10.3969/j.issn.1672-6413.2013.06.065
    [9]
    葛世荣. 采煤机技术发展历程(九):环境感知技术[J]. 中国煤炭,2021,47(2):1−17.

    GE Shirong. The development of coal shearer technology (Part nine):Environment sensing technology[J]. China Coal,2021,47(2):1−17.
    [10]
    杨滨海. 基于激光扫描技术的采煤机精确定位系统[D]. 徐州:中国矿业大学,2016.

    YANG Binhai. Accurate positioning system of shearer based on laser scanning technology[D]. Xuzhou:China University of Mining and Technology,2016.
    [11]
    谢巧军,蒙昱璋. 基于UWB技术的采煤机定位系统[J]. 智能矿山,2023,4(11):72−77.

    XIE Qiaojun,MENG Yuzhang. Positioning system of shearer based on UWB technology[J]. Journal of Intelligent Mine,2023,4(11):72−77.
    [12]
    YANG H,LI W,LUO C M,et al. Integrated SINS/WSN positioning system for indoor mobile target using novel asynchronous data fusion method[J]. Journal of Sensors,2017,2017(1):7879198.
    [13]
    党景锋,高晓光,刘东航. 基于油缸位移传感器的采煤机采高监测系统[J]. 煤矿机械,2017,38(5):120−121.

    DANG Jingfeng,GAO Xiaoguang,LIU Donghang. Mining height monitoring system of shearer based on cylinder displacement sensor[J]. Coal Mine Machinery,2017,38(5):120−121.
    [14]
    申伟鹏. 现代化采煤机摇臂姿态定位技术研究[J]. 机电工程技术,2018,47(10):187−189. doi: 10.3969/j.issn.1009-9492.2018.10.060

    SHEN Weipeng. Research on modern arm shearer rocker attitude positioning technology[J]. Mechanical & Electrical Engineering Technology,2018,47(10):187−189. doi: 10.3969/j.issn.1009-9492.2018.10.060
    [15]
    林江,盛浩. 编码器在采煤机滚筒高度控制中的应用[J]. 煤矿机械,2014,35(11):214−215.

    LIN Jiang,SHENG Hao. Application of absolute-encoder in automatic control of shearer rocker arm[J]. Coal Mine Machinery,2014,35(11):214−215.
    [16]
    李曼,郑思雨,刘浩东,等. 采煤机滚筒高度测量传感器工作环境磁场仿真与屏蔽研究[J]. 煤炭科学技术,2022,50(8):204−209.

    LI Man,ZHENG Siyu,LIU Haodong,et al. Study on magnetic field simulation and shielding design of shearer drum height measurement sensor working environment[J]. Coal Science and Technology,2022,50(8):204−209.
    [17]
    李曼,王志鹏. 基于巨磁阻效应的采煤机摇臂角度传感器设计研究[J]. 煤炭科学技术,2019,47(4):26−31.

    LI Man,WANG Zhipeng. Design and research on angle sensor for shearer rocker based on giant Magneto resistance effect[J]. Coal Science and Technology,2019,47(4):26−31.
    [18]
    王世佳,王世博,刘万里. 采煤机截割高度测量模型与测量误差分析[J]. 仪器仪表学报,2021,42(4):140−149.

    WANG Shijia,WANG Shibo,LIU Wanli. The measurement model and error analysis for shearer cutting height[J]. Chinese Journal of Scientific Instrument,2021,42(4):140−149.
    [19]
    张庆. 采煤机组合定位与姿态监测方法研究[D]. 太原:太原理工大学,2018.

    ZHANG Qing. Research on combined positioning and attitude monitoring method of shearer[D]. Taiyuan:Taiyuan University of Technology,2018.
    [20]
    吴睿. 大采高综采面采煤机不同进刀方式对块煤率的影响[J]. 自动化应用,2020(6):116−117.

    WU Rui. The influence of different cutting methods on the lump coal rate of the fully mechanized coal mining machine in large mining height[J]. Automation Application,2020(6):116−117.
    [21]
    陈金国,刘春生,范剑红,等. 采煤机滚筒调高系统建模及仿真[J]. 工矿自动化,2017,43(10):78‒82.

    CHEN Jinguo,LIU Chunsheng,FAN Jianhong,et al. Modeling and simulation of drum height adjusting system of shearer[J]. Industry and Mine Automation,2017,43(10):78‒82.
    [22]
    吴修可,孟婥,姚灵灵,等. 基于齐次坐标变换的编织工艺及芯模牵引轨迹分析[J]. 东华大学学报(自然科学版),2019,45(3):425−430. doi: 10.3969/j.issn.1671-0444.2019.03.017

    WU Xiuke,MENG Chuo,YAO Lingling,et al. Analysis of braiding process and mandrel’s traction trajectory based on homogeneous coordinate transformation[J]. Journal of Donghua University (Natural Science),2019,45(3):425−430. doi: 10.3969/j.issn.1671-0444.2019.03.017
    [23]
    刘锋. 齐次变换矩阵在机器人运动学中的应用[J]. 河南科技,2020,39(28):22−24. doi: 10.3969/j.issn.1003-5168.2020.28.013

    LIU Feng. The application of homogeneous transformation matrices in robot kinematics[J]. Henan Science and Technology,2020,39(28):22−24. doi: 10.3969/j.issn.1003-5168.2020.28.013
    [24]
    师月月. 一种基于四元数的手机姿态实时重构算法研究[D]. 西安:西安电子科技大学,2022.

    SHI Yueyue. Research on real-time reconstruction algorithm of mobile phone attitude based on quaternion[D]. Xi’an:Xidian University,2022.
    [25]
    何喜富. 基于iGMR原理角度传感器TLE5012B应用指南[J]. 单片机与嵌入式系统应用,2015,15(3):74−77.

    HE Xifu. Application guide of angle sensor TLE5012B based on iGMR principle[J]. Microcontrollers & Embedded Systems,2015,15(3):74−77.
  • Related Articles

    [1]XU Chuanzheng, LI Xin, TIAN Jijun, LIN Wen, JIANG Liwei, ZHANG Zhiheng. Mixed lithofacies shale and depositional environment of Longmaxi Formation in southern margin of Sichuan Basin[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(5): 208-217.
    [2]MENG Zhaoping, WANG Yuheng, ZHANG Kun, LU Yixin, CHEN Jun, YAO Meng. Analysis of hydraulic fracturing cracks for coal reservoirs and in-situ stress direction in Southern Qinshui Basin[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (10).
    [3]WANG Hai, YANG Zhaozhong, LI Yue, GAO Haibin, ZHANG Kun, HU Hao, KONG Peng. Study on drilling and fracturing technology for deep complex structurecoal reservior in Qinshui Basin[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (9).
    [4]CHEN Zhengrong LIU Shujie FENG Huanzhi PENG Chengyong, . Research on fracturing performance evaluation of coalbed methane well in Qinshui Basin[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (9).
    [5]Ji Yong He Baosheng Liu Shujie Cao Yanfeng Zhang Binhai, . Improvement technology of CBM horizontal well fracturing in Qinshui Basin[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (12).
    [6]Zhang Yongnian Ma Xinfang Wang Yi Hou Tengfei Wang Wei, . Optimized study on fracture coefficient of sectional fracturing in coalbeo methane horizontal well in Qinduan Block[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (9).
    [7]Guan Baoshan Liu Yuting Liu Ping Liang Li Cui Weixiang, . Present situation and development of coalbed methane fracturing fluid[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (5).
    [8]Analysis on Fracturing Failure Cause of Coal Bed Methane Well in South Part of Qinshui Basin[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (6).
    [9]Design and Practices of Optimized High Pressure Fracturing System for Coal Bed Methane Well[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (7).
    [10]Coal/Rock Mechanics Features of Qinshui Basin and Fracturing Crack Control[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (3).
  • Cited by

    Periodical cited type(5)

    1. 尹晓敏. 新疆阜康矿区四工河区块煤储层敏感性分析. 当代化工研究. 2024(08): 56-58 .
    2. 王斌杰. 煤层气井煤粉堵塞机理与治理技术现状及研究展望. 石化技术. 2024(11): 265-266+39 .
    3. 皇凡生,桑树勋,刘世奇,陈强,周效志,王猛. 压裂液矿化度对支撑裂缝及裂隙内煤粉运移的影响. 煤炭学报. 2023(04): 1622-1633 .
    4. 刘建华,王生维,粟冬梅. 二连盆地群低煤阶煤储层裂隙地质建模与精细描述. 煤炭科学技术. 2022(05): 198-207 . 本站查看
    5. 张金发,李亭,吴警宇,管英柱,徐摩,但植华,周明秀. 特低渗透砂岩储层敏感性评价与酸化增产液研制. 特种油气藏. 2022(05): 166-174 .

    Other cited types(2)

Catalog

    Article views (22) PDF downloads (11) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return