Citation: | LI Ran,WANG Chuliang,LIU Bo,et al. Research and application on megawatt level intelligent fracturing pump system in coal mine[J]. Coal Science and Technology,2025,53(5):372−380. DOI: 10.12438/cst.2024-0193 |
This paper presents the development of a megawatt-scale intelligent fracturing pump system for underground coal mines, designed to address the escalating demands for flow and pressure in large-scale regional fracturing applications, particularly in hard roof management and enhanced gas extraction permeability. The system integrates automatic control and variable frequency technology with the design of underground coal mine fracturing pumps, enabling dynamic collection of performance parameter data at various stages of hydraulic fracturing. It provides real-time analysis of the power matching for electrically driven fracturing pumps and achieves full automation of the fracturing process. Key technological challenges, such as the development of special materials for high-pressure, high-flow-rate fracturing pumps; the reliability of the transmission system and hydraulic ends for megawatt-level fracturing pumps; and intelligent control technology, have been successfully addressed. The research included: Development of high-strength, erosion-resistant martensitic precipitation hardening stainless steel suitable for extreme conditions with large flow, ultra-high pressure, and sand-mixed media, along with ultra-high pressure self-reinforcing treatment to enhance the fatigue life of the hydraulic ends of fracturing pumps; Investigation of critical reliability technologies, including high-strength welding for alloy steel, high-load-bearing, high-power-to-weight ratio gear transmission technology, and wear-resistant friction pairs of aluminum bronze alloy-cast iron, to ensure the reliability of the transmission system under high-power conditions; Creation of a high-durability metal plunger-combination seal fracturing fluid sealing pair, with the application of computer simulation technologies such as virtual prototyping, FEA, CFD, and hydraulic system simulation to optimize the structure, performance, and reliability of the fracturing pump’s fluid end suction and discharge systems; Mastery of technologies such as low-frequency variable flow sealing for deep boreholes, automatic identification of coal and rock layer fracturing, and cyclic fracturing control, enabling intelligent control throughout the fracturing process. The industrial trial of this system has been successfully conducted at the Caojiatan coal mine 122110 extra-thick coal mine working face for weak zone management of hard roof strata and at the Dongli coal mine 1250 gas control lane for high-efficiency extraction of anti-reflemine 122110 extra-thick coal mine working face for weak zone management of hard roof strata and at the Dongli coal mine 1250 gas control lane for high-efficiency extraction of anti-reflection gas in coal seam areas. Field tests demonstrated that at the Caojiatan coal mine, pre-splitting treatment for hard roofs achieved stable fracture expansion pressure with a maximum of 32.4 MPa and an average flow rate of 100 m3/h. At the Dongli Coal Mine, the gas permeability enhancement test revealed that after 10 days of hydraulic fracturing, the average pure gas extraction volume increased to 1.596 m3/min, approximately 29 times that of the conventional drilling extraction process.
[1] |
康红普,冯彦军,张震,等. 煤矿井下定向钻孔水力压裂岩层控制技术及应用[J]. 煤炭科学技术,2023,51(1):31−44.
KANG Hongpu,FENG Yanjun,ZHANG Zhen,et al. Hydraulic fracturing technology with directional boreholes for strata control in underground coal mines and its application[J]. Coal Science and Technology,2023,51(1):31−44.
|
[2] |
康红普,冯彦军. 煤矿井下水力压裂技术及在围岩控制中的应用[J]. 煤炭科学技术,2017,45(1):1−9.
KANG Hongpu,FENG Yanjun. Hydraulic fracturing technology and its applications in strata control in underground coal mines[J]. Coal Science and Technology,2017,45(1):1−9.
|
[3] |
孙四清,李文博,张俭,等. 煤矿井下长钻孔分段水力压裂技术研究进展及发展趋势[J]. 煤田地质与勘探,2022,50(8):1−15. doi: 10.12363/issn.1001-1986.22.06.0520
SUN Siqing,LI Wenbo,ZHANG Jian,et al. Research progress and development trend of staged hydraulic fracturing technology in long-borehole underground coal mine[J]. Coal Geology & Exploration,2022,50(8):1−15. doi: 10.12363/issn.1001-1986.22.06.0520
|
[4] |
徐雪战. 低透气煤层超高压水力割缝与水力压裂联合增透技术[J]. 煤炭科学技术,2020,48(7):311−317.
XU Xuezhan. Combined permeability enhancement technology of ultra-high pressure hydraulic slot and hydraulic fracturing in low permeability coal seam[J]. Coal Science and Technology,2020,48(7):311−317.
|
[5] |
国家发展改革委,国家能源局. 能源技术革命创新行动计划(2016—2030年)[EB/OL]. (2016−04−07)/[2022−09−25]. http://www. nea.gov.cn/2016-06/01/c_135404377.htm.
|
[6] |
李然,王伟,苏哲. 高压大流量乳化液泵滑动轴承热流体动力润滑仿真分析[J]. 煤炭学报,2014,39(S2):576−582.
LI Ran,WANG Wei,SU Zhe. Numerical study on thermohydrodynamic performance of journal bearing in high-pressure and large-flow-rate emulsion pump[J]. Journal of China Coal Society,2014,39(S2):576−582.
|
[7] |
李然. 大采高工作面高压大流量乳化液泵的研制及应用[J]. 煤炭科学技术,2017,45(12):145−149.
LI Ran. Research and development as well as application of high pressure and high flow emulsion pump to large mining height face[J]. Coal Science and Technology,2017,45(12):145−149.
|
[8] |
李然,张启龙,刘昊,等. 煤矿用纯水介质高压大流量柱塞泵关键技术研究[J]. 液压气动与密封,2020,40(5):17−21. doi: 10.3969/j.issn.1008-0813.2020.05.005
LI Ran,ZHANG Qilong,LIU Hao,et al. Research on key technologies of plunger pump under pure water medium condition[J]. Hydraulics Pneumatics & Seals,2020,40(5):17−21. doi: 10.3969/j.issn.1008-0813.2020.05.005
|
[9] |
叶健. 1 250 L/min、40 MPa高压大流量乳化液泵站[J]. 智能矿山,2022,3(1):36−37.
|
[10] |
李然,孙晓冬,刘波,等. 煤矿井下智能压裂泵系统研究[J]. 煤炭科学技术,2022,50(4):264−269.
LI Ran,SUN Xiaodong,LIU Bo,et al. Research on intelligent fracturing pump system in coal mine[J]. Coal Science and Technology,2022,50(4):264−269.
|
[11] |
陈冬冬,孙四清,张俭,等. 井下定向长钻孔水力压裂煤层增透技术体系与工程实践[J]. 煤炭科学技术,2020,48(10):84−89.
CHEN Dongdong,SUN Siqing,ZHANG Jian,et al. Technical system and engineering practice of coal seam permeability improvement through underground directional long borehole hydraulic fracturing[J]. Coal Science and Technology,2020,48(10):84−89.
|
[12] |
李然,王初亮,刘波,等. 压裂系统和压裂方法 [P]. 中国专利:CN202111241528.4,2021−10−25.
|
[13] |
国家安全生产监督管理总局. 煤矿用乳化液泵站 第 1 部分:泵站:MT/T 188.1—2006[S]. 北京:煤炭工业出版社,2006.
|
[14] |
刘明亮,王大龙,王伟,等. 一种变频水力压裂系统及其压力调节方法[S]. 中国专利:CN201911024405.8. 2019-10-25.
|
[15] |
《往复泵设计》编写组. 往复泵设计[M]. 北京:机械工业出版社,1987.
|
[16] |
李然,王伟,苏哲. 高压大流量乳化液泵曲轴疲劳强度分析[J]. 煤矿开采,2014(1):45−48.
LI Ran,WANG Wei,SU Zhe. Fatigue strength analysis of bent axle of large-flow and high-pressure emulsion pump[J]. Coal Mining Technology,2014(1):45−48.
|
[17] |
杨子龙,张朵,何新党等. 舰船齿轮传动轴模拟试验件设计方法研究[J]. 热能动力工程,2021,36(5):55−60.
YANG Zilong,ZHANG Duo,HE Xindang,et al. Design method for the simulation parts of ship gear drive shaft[J]. Journal of Engineering for Thermal Energy and Power,2021,36(5):55−60.
|
[18] |
LI R,WEI W S,LIU H,et al. Simulation study on liquid-end of high-pressure and large-flow-rate reciprocating pump[C]:2019 IEEE 8th International Conference on Fluid Power and Mechatronics (FPM). IEEE,2019:1008−1014.
|
[19] |
LI R, WANG D L, WEI W S, et al. Analysis of the movement characteristics of the pump valve of the mine emulsion pump based on the Internet of Things and cellular automata[J]. Mobile Information Systems,2021,2021(1):9032769.
|
[20] |
王初亮,李然,陈敬斌,等. 齿轮箱和具有其的压裂泵[S]. 中国专利:CN202321443402X. 2023−06−27.
|
[21] |
LI R,WEI W S,LIU H,et al. Experimental and numerical study on the dynamic and flow characteristics of a reciprocating pump valve[J]. Processes,2022,10(7):1328. doi: 10.3390/pr10071328
|
[22] |
叶文杰, 陈奎生, 湛从昌, 等. 高压压裂泵配流阀流场特性分析及结构参数优化[J]. 武汉科技大学学报,2021,44(3):207−212. doi: 10.3969/j.issn.1674-3644.2021.03.007
YE Wenjie, CHEN Kuisheng, ZHAN Congchang, et al. Analysis of flow field characteristics and optimization of structural parameters for distributing valve in high-pressure fracturing pump[J]. Journal of Wuhan University of Science and Technology,2021,44(3):207−212. doi: 10.3969/j.issn.1674-3644.2021.03.007
|
[23] |
张翼,张婷,满满,等. 阀门导向杆撞击应力数值分析[J]. 导弹与航天运载技术,2018(1):45−48.
Zhang Yi,Zang Ting,Man Man,et al. Numerical Simulation for Impact Stress of Guide Stem in Valves[J]. Missiles and Space Vehicles,2018(1):45−48.
|
1. |
郭萌. “三高”环境下煤矿锚杆腐蚀机理研究与支护优化. 陕西煤炭. 2025(02): 153-157 .
![]() | |
2. |
巩师鑫. 深部复杂环境工作面液压支架压力-位姿融合分析技术. 工矿自动化. 2025(01): 71-77 .
![]() | |
3. |
王国法,张金虎,任怀伟,杜毅博,张德生,闫汝瑜,于翔. 煤炭高效开采数智技术与成套装备研究及应用. 煤炭学报. 2025(01): 43-64 .
![]() | |
4. |
庞义辉,毕经龙,袁鹏喆,赵宝福,丁自伟. 煤机装备全生命周期管理系统架构与关键技术. 煤炭科学技术. 2025(02): 339-350 .
![]() | |
5. |
蒋力帅,杨一鸣,赵阳,李皓哲,吴琦,彭晓涵. 动载下含内部裂隙类岩体力学响应与能量耗散规律. 煤炭科学技术. 2025(02): 137-150 .
![]() | |
6. |
亓玉浩. 智能化背景下大型煤炭企业管控模式创新变革的思考. 煤炭经济研究. 2024(04): 48-52 .
![]() | |
7. |
康宇博. S煤矿薄煤层智能化开采技术研究. 产业创新研究. 2024(14): 102-104 .
![]() | |
8. |
王旭东,闫祖喻,郭强,张锁,唐佳伟,胡瑜恬,刘小庆,李井峰. 地下水水化学垂向分带特征及成因机制——以新街矿区为例. 煤炭科学技术. 2024(08): 222-233 .
![]() | |
9. |
庞义辉,关书方,姜志刚,白云,李鹏. 综放工作面围岩控制与智能化放煤技术现状及展望. 工矿自动化. 2024(09): 20-27 .
![]() | |
10. |
刘海明. 大采高综采工作面矿压规律研究. 中国煤炭. 2024(S1): 221-230 .
![]() | |
11. |
徐钦明,王杰春,王猛. 陷落柱预破碎爆破数值模拟研究. 煤矿爆破. 2024(04): 19-22 .
![]() |