Citation: | WEN Zhuoyue,DU Zhaowen,LI Shuaiqian. Research on the time-dependent stability of filling paste under the action of different concentrations of chloride salts[J]. Coal Science and Technology,2025,53(5):114−126. DOI: 10.12438/cst.2024-0189 |
In order to study the time-dependent characteristics of filling paste under the action of mine water, chloride salt solutions with mass fraction of 0%, 5%, 10%, and 15% were prepared, and chloride salt dry wet cycle tests with erosion cycles of 4, 8, 12, and 16 times were carried out. The macroscopic and microscopic characteristics of the filling paste were analyzed, the damage curve of the filling paste was obtained based on the constructed compaction-elastoplastic constitutive model, and the stress evolution mechanism of the filling paste under the action of chloride salt was discussed. The results indicate that the mass of filling paste shows a sharp increase, a slow increase, and a slow decrease trend with the increase of chloride erosion cycles. High-concentration chloride salt solution accelerate the quality change of filling paste. As the cycles of chloride erosion increase, the filling paste exhibits a macro-mechanical characterized by high stress-low strain, low stress-high strain, and low stress-low strain. The compaction degree exhibits a dynamic evolution characterized by an initial sharp decrease followed by a stable variation, the plasticity factor demonstrates a developmental trend of initial stability followed by a sharp change. The chloride salt promotes the stable development of the damage process of filling paste and inhibits the surge of damage in the later stage of plasticity. The development curvature of the damage curve after 16 dry-wet cycles in 5% and 10% chloride salt solution is relatively small, and the development curvature of the damage curve after 12 dry-wet cycles in 15% chloride salt solution is relatively small. Chemical corrosion is a significant factor leading to the deterioration of the binding properties of filling paste. The salt corrosion products from chemical corrosion partly originate from the chemical combination of chloride and unreacted tricalcium aluminate(C3A), and another portion arises from the chemical bonding of chloride with the hydration product ettringite(AFt). The coordination deformation between salt corrosion products and internal structure is a key factor causing the alienation of the bearing performance of filling paste. The crystalline expansion force of salt corrosion products resists internal stresses of filling paste, resulting in a reduction in compaction performance and crack propagation ability. This study can provide a theoretical basis for the analysis of the time-dependent stability of filling paste in mine water, and this study is of great significance for maintaining the long-term stability of filling paste.
[1] |
王永岩,于卓群,崔立桩. 不同含水率膏体充填材料的单轴压缩试验研究[J]. 煤炭科学技术,2022,50(6):219−224.
WANG Yongyan,YU Zhuoqun,CUI Lizhuang. Experimental study on compressive behavior of cemented paste backfill material with different water contents[J]. Coal Science and Technology,2022,50(6):219−224.
|
[2] |
张吉雄,张强,周楠,等. 煤基固废充填开采技术研究进展与展望[J]. 煤炭学报,2022,47(12):4167−4181.
ZHANG Jixiong,ZHANG Qiang,ZHOU Nan,et al. Research progress and prospect of coal based solid waste backfilling mining technology[J]. Journal of China Coal Society,2022,47(12):4167−4181.
|
[3] |
杜兆文,陈绍杰,尹大伟,等. 氯盐侵蚀环境下膏体充填体稳定性试验研究[J]. 中国矿业大学学报,2021,50(3):532−538,547.
DU Zhaowen,CHEN Shaojie,YIN Dawei,et al. Experimental study of stability of paste backfill under chloride erosion environment[J]. Journal of China University of Mining & Technology,2021,50(3):532−538,547.
|
[4] |
王树帅,李永亮,李清,等. 基于泰波理论的矸石级配系数对充填材料性能的影响[J]. 采矿与安全工程学报,2022,39(4):683−692.
WANG Shushuai,LI Yongliang,LI Qing,et al. Influence of gangue gradation coefficient on the performance of filling material based on talbol theory[J]. Journal of Mining & Safety Engineering,2022,39(4):683−692.
|
[5] |
李亚娇,鱼郑,鞠恺,等. 粉煤灰基膏体充填脱氨方法研究综述[J]. 煤炭科学技术,2023,51(6):265−274.
LI Yajiao,YU Zheng,JU Kai,et al. A review of fly ash-based paste filling deamination methods[J]. Coal Science and Technology,2023,51(6):265−274.
|
[6] |
徐文彬,陈伟,张亚伦,等. 深部充填开采矸石-粉煤灰料浆流变特性研究[J]. 煤炭科学技术,2023,51(3):85−93.
XU Wenbin,CHEN Wei,ZHANG Yalun,et al. Research on rheological characteristics of gangue-fly ash slurry in deep filling mining[J]. Coal Science and Technology,2023,51(3):85−93.
|
[7] |
杨科,魏祯,赵新元,等. 黄河流域煤电基地固废井下绿色充填开采理论与技术[J]. 煤炭学报,2021,46(S2):925−935.
YANG Ke,WEI Zhen,ZHAO Xinyuan,et al. Theory and technology of green filling of solid waste in under-ground mine at coal power base of Yellow River Basin[J]. Journal of China Coal Society,2021,46(S2):925−935.
|
[8] |
孙亚军,赵先鸣,徐智敏,等. 煤矿矿井水水质形成及演化的水动力场驱动作用及数学模型构建[J]. 煤炭学报,2023,48(11):4157−4170.
SUN Yajun,ZHAO Xianming,XU Zhimin,et al. Hydrodynamic field driving effect and mathematical model construction of water quality formation and evolution in coal mine[J]. Journal of China Coal Society,2023,48(11):4157−4170.
|
[9] |
陈绍杰,刘久潭,汪锋,等. 基于PCA-RA的滨海矿井水源识别技术研究[J]. 煤炭科学技术,2021,49(2):217−225.
CHEN Shaojie,LIU Jiutan,WANG Feng,et al. Technological research on water source identiftcation of coastal coalmines based on PCA-RA[J]. Coal Science and Technology,2021,49(2):217−225.
|
[10] |
刘晓蕊,李栋,王高峰. 生物炭吸附煤矿酸性矿井水中污染物技术展望[J]. 采矿与安全工程学报,2022,39(6):1187−1197.
LIU Xiaorui,LI Dong,WANG Gaofeng. Prospects of biochar adsorption for pollutants removal from acid mine drainage[J]. Journal of Mining & Safety Engineering,2022,39(6):1187−1197.
|
[11] |
郭育霞,冉洪宇,冯国瑞,等. 酸性环境中矸石胶结充填体强度及徐变特征[J]. 采矿与安全工程学报,2021,38(2):361−369.
GUO Yuxia,RAN Hongyu,FENG Guorui,et al. Strength and creep characteristics of cemented gangue backfill in acid environment[J]. Journal of Mining & Safety Engineering,2021,38(2):361−369.
|
[12] |
金爱兵,姚宝顺,陈帅军,等. 不同氯离子质量分数下充填体变形破坏及能耗特征[J]. 中南大学学报(自然科学版),2023,54(6):2370−2381. doi: 10.11817/j.issn.1672-7207.2023.06.025
JIN Aibing,YAO Baoshun,CHEN Shuaijun,et al. Deformation failure and energy consumption characteristics of filling body at different mass fraction of chloride ions[J]. Journal of Central South University (Science and Technology),2023,54(6):2370−2381. doi: 10.11817/j.issn.1672-7207.2023.06.025
|
[13] |
高萌,刘娟红,吴爱祥,等. 典型氯盐环境中富水充填材料腐蚀及劣化机理[J]. 中南大学学报(自然科学版),2016,47(8):2776−2783. doi: 10.11817/j.issn.1672-7207.2016.08.032
GAO Meng,LIU Juanhong,WU Aixiang,et al. Corrosion and deterioration mechanism of rich-water filling materials in typical chloride salt environment[J]. Journal of Central South University (Science and Technology),2016,47(8):2776−2783. doi: 10.11817/j.issn.1672-7207.2016.08.032
|
[14] |
刘娟红,高萌,吴爱祥. 酸性环境中富水充填材料腐蚀及劣化机理[J]. 工程科学学报,2016,38(9):1212−1220.
LIU Juanhong,GAO Meng,WU Aixiang. Corrosion and deterioration mechanism of water-rich filling materials in acid solution[J]. Chinese Journal of Engineering,2016,38(9):1212−1220.
|
[15] |
孙琦,李喜林,卫星,等. 矿井水腐蚀对充填膏体强度影响的试验研究[J]. 硅酸盐通报,2015,34(5):1246−1251.
SUN Qi,LI Xilin,WEI Xing,et al. Experimental study on the influence of mine water corrosion over filling paste strength[J]. Bulletin of the Chinese Ceramic Society,2015,34(5):1246−1251.
|
[16] |
李北星,周长泉,蔡老虎,等. 硫酸环境作用下粉煤灰混凝土性能劣化时变规律[J]. 材料科学与工程学报,2014,32(6):809−815.
LI Beixing,ZHOU Changquan,CAI Laohu,et al. Time-dependent rules of performance degradation of fly ash concretes in sulfuric acid environments[J]. Journal of Materials Science and Engineering,2014,32(6):809−815.
|
[17] |
赵力,刘娟红,周卫金,等. 矿井环境中混凝土材料腐蚀损伤演化与机理分析[J]. 煤炭学报,2016,41(6):1422−1428.
ZHAO Li,LIU Juanhong,ZHOU Weijin,et al. Damage evolution and mechanism of concrete erosion at sulfate environment in underground mine[J]. Journal of China Coal Society,2016,41(6):1422−1428.
|
[18] |
周俊丽,王玉超. 神东矿区水质对乳化液稳定性影响的研究[J]. 煤炭科学技术,2017,45(7):118−122.
ZHOU Junli,WANG Yuchao. Study on water quality in Shendong Mining Area affected to stability of emulsion[J]. Coal Science and Technology,2017,45(7):118−122.
|
[19] |
刘加平,刘玉静,石亮,等. 氯盐-硫酸盐对水泥基材料的复合侵蚀破坏[J]. 建筑材料学报,2016,19(6):993−997. doi: 10.3969/j.issn.1007-9629.2016.06.007
LIU Jiaping,LIU Yujing,SHI Liang,et al. Combined attack of chloride-sulfate on cement-based materials[J]. Journal of Building Materials,2016,19(6):993−997. doi: 10.3969/j.issn.1007-9629.2016.06.007
|
[20] |
郭凯,佟舟,张树峰,等. 冻融与氯盐侵蚀耦合作用下GO-RAC的耐久性能[J]. 建筑材料学报,2023,26(11):1183−1191. doi: 10.3969/j.issn.1007-9629.2023.11.006
GUO Kai,TONG Zhou,ZHANG Shufeng,et al. Durability of GO-RAC under the coupling action of freeze-thaw cycling and chloride salt erosion[J]. Journal of Building Materials,2023,26(11):1183−1191. doi: 10.3969/j.issn.1007-9629.2023.11.006
|
[21] |
赵庆新,李东华,闫国亮,等. 受损混凝土抗硫酸盐腐蚀性能[J]. 硅酸盐学报,2012,40(2):217−220.
ZHAO Qingxin,LI Donghua,YAN Guoliang,et al. Corrosion resistance of damaged concrete exposed to sulphate attack[J]. Journal of the Chinese Ceramic Society,2012,40(2):217−220.
|
[22] |
余伟健,万幸,刘芳芳,等. 红土膏体充填材料及其物理特性试验研究[J]. 煤炭科学技术,2021,49(2):61−68.
YU Weijian,WAN Xing,LIU Fangfang,et al. Experimental study on red clay paste backfilling material and its physical characteristics[J]. Coal Science and Technology,2021,49(2):61−68.
|
[23] |
陈会官,赵程,张睿,等. 考虑空隙压密特征的岩石弹塑性损伤增量本构模型[J]. 岩石力学与工程学报,2023,42(12):3043−3055.
CHEN Huiguan,ZHAO Cheng,ZHANG Rui,et al. Elastoplastic damage incremental constitutive model of rock considering the characteristics of void compaction[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(12):3043−3055.
|
[24] |
张超,曹文贵,徐赞,等. 岩石初始宏观变形模拟及微裂纹闭合应力确定方法[J]. 岩土力学,2018,39(4):1281−1288,1301.
ZHANG Chao,CAO Wengui,XU Zan,et al. Initial macro-deformation simulation and determination method of micro-crack closure stress for rock[J]. Rock and Soil Mechanics,2018,39(4):1281−1288,1301.
|
[25] |
吕思清,朱杰兵,汪斌,等. 冻融荷载耦合作用下含开口裂隙砂岩宏细观损伤模型研究[J]. 岩石力学与工程学报,2023,42(5):1124−1135.
LYU Siqing,ZHU Jiebing,WANG Bin,et al. Study on macro-meso damage model of sandstone with open cracks under the coupling action of freeze-thaw and load[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(5):1124−1135.
|
[26] |
耿殿栋,亓宪寅,付鹏,等. 不同钻井液浸泡下泥页岩力学特性及损伤本构模型[J]. 煤炭科学技术,2023,51(10):109−118.
GENG Diandong,QI Xianyin,FU Peng,et al. Mechanical properties and damage constitutive model of mud shale under different drilling fluids immersion1[J]. Coal Science and Technology,2023,51(10):109−118.
|
[27] |
赵树果,苏东良,张亚伦,等. 尾砂胶结充填体蠕变试验及统计损伤模型研究[J]. 金属矿山,2016(5):26−30. doi: 10.3969/j.issn.1001-1250.2016.05.006
ZHAO Shuguo,SU Dongliang,ZHANG Yalun,et al. Study on creep test of cemented tailings backfill and statistical damage model[J]. Metal Mine,2016(5):26−30. doi: 10.3969/j.issn.1001-1250.2016.05.006
|
[28] |
刘冬桥,郭允朋,李杰宇,等. 基于声发射的脆性岩石单轴压缩损伤演化与本构模型[J]. 中国矿业大学学报,2023,52(4):687−700.
LIU Dongqiao,GUO Yunpeng,LI Jieyu,et al. Damage evolution and constitutive model of brittle rock under uniaxial compression based on acoustic emission[J]. Journal of China University of Mining & Technology,2023,52(4):687−700.
|
[29] |
董陇军,张义涵,孙道元,等. 花岗岩破裂的声发射阶段特征及裂纹不稳定扩展状态识别[J]. 岩石力学与工程学报,2022,41(1):120−131.
DONG Longjun,ZHANG Yihan,SUN Daoyuan,et al. Stage characteristics of acoustic emission and identification of unstable crack state for granite fractures[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(1):120−131.
|
[30] |
钱维民,苏骏,李扬,等. 超低温和氯盐作用对超高韧性水泥基复合材料碳化性能的影响[J]. 复合材料学报,2023,40(6):3486−3498.
QIAN Weimin,SU Jun,LI Yang,et al. Effect of ultra-low temperature and chloride on carbonation performance of ultra-high toughness cement-based composite[J]. Acta Materiae Compositae Sinica,2023,40(6):3486−3498.
|
[31] |
张经双,段雪雷,吴倩云,等. 氯盐-干湿循环耦合作用下水泥土的力学性能[J]. 建筑材料学报,2021,24(3):508−515,550. doi: 10.3969/j.issn.1007-9629.2021.03.009
ZHANG Jingshuang,DUAN Xuelei,WU Qianyun,et al. Mechanical properties of cement soil subject to coupling effect of chloride salt solution and dry-wet cycles[J]. Journal of Building Materials,2021,24(3):508−515,550. doi: 10.3969/j.issn.1007-9629.2021.03.009
|
[32] |
史天尧,陈星宇,张敏,等. 水泥基材料中氯离子结合机理及其影响因素研究进展[J]. 硅酸盐通报,2021,40(1):13−24.
SHI Tianyao,CHEN Xingyu,ZHANG Min,et al. Mechanism of chloride binding and its influence factors in cement-based materials[J]. Bulletin of the Chinese Ceramic Society,2021,40(1):13−24.
|
[33] |
王雪,王全,张滨,等. 钢渣作为钾盐矿充填料胶结剂的固化机理[J]. 工程科学学报,2018,40(10):1177−1186.
WANG Xue,WANG Quan,ZHANG Bin,et al. Hydration mechanism of using steel slag as binder for backfill materials in potash mines[J]. Chinese Journal of Engineering,2018,40(10):1177−1186.
|
[34] |
张立明,余红发. 干湿循环次数对氯离子扩散系数的影响[J]. 湖南大学学报(自然科学版),2014,41(3):26−30.
ZHANG Liming,YU Hongfa. Influence of dry-wet cycles on chloride diffusion coefficient[J]. Journal of Hunan University (Natural Sciences),2014,41(3):26−30.
|
[35] |
王小刚,史才军,何富强,等. 氯离子结合及其对水泥基材料微观结构的影响[J]. 硅酸盐学报,2013,41(2):187−198. doi: 10.7521/j.issn.0454-5648.2013.02.11
WANG Xiaogang,SHI Caijun,HE Fuqiang,et al. Chloride binding and its effects on microstructure of cement-based materials[J]. Journal of the Chinese Ceramic Society,2013,41(2):187−198. doi: 10.7521/j.issn.0454-5648.2013.02.11
|
1. |
张鹏飞. 煤矿深度筛分与重介质选煤技术结合工艺研究. 煤矿现代化. 2024(03): 137-140+136 .
![]() | |
2. |
孙郡庆,沈繁舜,李林海,李泽鑫,李子源,周晨阳,周恩会,张亚东. 气-固脉动流化床加重质混合与分离特性及煤炭分选研究. 煤炭技术. 2024(10): 269-273 .
![]() | |
3. |
王美君,谭章禄,吕晗冰,桂谕典. 选煤厂智能化建设技术架构与技术策略研究. 矿业科学学报. 2024(06): 1017-1026 .
![]() | |
4. |
齐健,尉维洁,雷慧诚,万腾锋,周南,陈廷官. 不同分布板下干法重介质流化床流化及分选特性研究. 煤炭科学技术. 2024(S2): 480-488 .
![]() | |
5. |
涂灿. VCS智能干选机的试验研究. 煤炭加工与综合利用. 2023(06): 37-41 .
![]() | |
6. |
胡玉玺,杨文宇,王成龙. 流化床浮选粗粒分离技术. 能源与环保. 2023(12): 239-243+248 .
![]() |