Advance Search
YANG Ke,HE Shuxin,HE Xiang,et al. Foundation and technology of coordinated utilization of bulk solid waste ‘Three modernizations’ in coal power base[J]. Coal Science and Technology,2024,52(4):69−82. DOI: 10.12438/cst.2024-0129
Citation: YANG Ke,HE Shuxin,HE Xiang,et al. Foundation and technology of coordinated utilization of bulk solid waste ‘Three modernizations’ in coal power base[J]. Coal Science and Technology,2024,52(4):69−82. DOI: 10.12438/cst.2024-0129

Foundation and technology of coordinated utilization of bulk solid waste ‘Three modernizations’ in coal power base

Funds: 

National Natural Science Foundation of China (52130402); National Key Research and Development Program of China (2019YFC1904304); Funding Project of Hefei Comprehensive National Science Center Energy Research Institute (Anhui Energy Laboratory) (21KZS217)

More Information
  • Received Date: January 07, 2024
  • Available Online: April 10, 2024
  • The construction of 14 large-scale coal bases and 89 demonstration bases for the comprehensive utilization of bulk solid waste in China marks that the utilization of bulk solid waste in mining areas has been incorporated into the national strategic development layout. The long-term high-intensity development and utilization of coal resources has caused the near depletion of shallow-buried coal seam resources in mining areas, and the large-scale solid waste accumulation and surface subsidence of coal power and chemical bases has become a problem restricting the green, low-carbon and high-quality development of mining areas. Co-operative utilization of bulk coal-based solid waste and green filling is an effective way to liberate the “three down and one up” pressed coal, extend the service life of mines, and realize the harmless, resourceful, and large-scale “three” utilization of solid waste. Based on the types and production of coal-based solid waste in Shanxi Province, the “East China Energy Granary” Anhui Lianghuai Base and Ningdong Energy and Chemical Base, it elaborates in detail the harmless disposal of coal-based solid waste through heavy metal adsorption and desorption and complexation passivation technology with coal gangue, fly ash, furnace slag, gasification slag and desulphurization gypsum as the main materials, listing the classification and application of coal-based solid waste, and the application of coal gangue, fly ash, furnace slag, gasification slag and desulphurization gypsum as the main materials. List the ways of resource utilization of coal-based solid waste classified and applied to low calorific value coal-based solid waste for power generation, preparation of building materials such as cement, bricks and tiles, etc. Comparatively analyze the ways of reclamation and backfilling of coal mining subsidence area and downhole filling and large-scale utilization of coal-based solid waste, highlighting the superiority of downhole filling of coal-based solid waste. Based on the deep coal resources of coal electrification bases, the theory and key technologies of green filling mining are proposed, including the synergistic technology of deep coal gangue source reduction and mining and filling, the technology of efficient preparation and deep underground transportation of filling materials, and the deep multi-field coupling mechanism of coal-based solid waste filling materials, and the technological principles and methods of the whole process of deep filling mining of multi-source coal-based solid waste from the source, process to the end are investigated to solve the technical problems of deep underground filling of mining areas. The technical problems of filling are solved. According to the geological conditions and filling purposes of Renjiazhuang Coal Mine in Ningdong Base, Huoerxinhe Coal Mine in Shanxi Province and Huaibei Mining Area, the key technologies of low-level filling by overdrilling, multi-separation layer stepped grouting under the conditions of atypical characteristics of key layers and synergistic utilization of coal-based solid wastes have been proposed, which comprehensively combine the advantages of disposal and utilization of solid wastes from mines, development and utilization of deep coal resources, control of subsidence of the ground surface, and ecological environment protection, and form a comprehensive plan for the disposal and utilization of bulk solid wastes from coal power and chemical bases. Coal power and chemical base bulk solid waste synergistic utilization and green mining mode, providing reference for high quality coal mining and low damage to the environment.

  • [1]
    王双明,申艳军,宋世杰,等. “双碳”目标下煤炭能源地位变化与绿色低碳开发[J]. 煤炭学报,2023,48(7):2599−2612.

    WANG Shuangming,SHEN Yanjun,SONG Shijie,et al. Change of coal energy status and green and low-carbon development under the “dual carbon” goal[J]. Journal of China Coal Society,2023,48(7):2599−2612.
    [2]
    袁 亮. 我国煤炭主体能源安全高质量发展的理论技术思考[J]. 中国科学院院刊,2023,38(1):11−22.

    YUAN Liang. Theory and technology considerations on high-quality development of coal main energy security in China[J]. Bulletin of Chinese Academy of Sciences,2023,38(1):11−22.
    [3]
    李全生. 井工煤矿减损开采理论与技术体系[J]. 煤炭学报,2024,49(2):988−1002.

    LI Quansheng. Reduction theory and technical system of underground coal mining[J]. Journal of China Coal Society,2024,49(2):988−1002.
    [4]
    奚弦,桑树勋,刘世奇.煤矿区固废矿化固定封存CO2与减污降碳协同处置利用的研究进展[J/OL].煤炭学报,1−16[2024-04-16]. https://doi.org/10.13225/j.cnki.jccs.2023. 1075.

    XI Xian, SANG Shuxun, LIU Shiqi.Progress in research of CO2 fixation and sequestration by coal mine solid waste mineralization and co-disposal of pollution and carbon reduction[J/OL].Journal of China Coal Society,1−16[2024-04-16]. https://doi.org/10.13225/j.cnki.jccs. 2023.1075.
    [5]
    周 楠,姚依南,宋卫剑,等. 煤矿矸石处理技术现状与展望[J]. 采矿与安全工程学报,2020,37(1):136−146.

    ZHOU Nan,YAO Yinan,SONG Weijian,et al. Present situation and prospect of coal gangue treatment technology[J]. Journal of Mining & Safety Engineering,2020,37(1):136−146.
    [6]
    LIU Shuai,JIAO Jin ,YU Huayang,et al. Promotional effect of shaped coal gangue composite phase change agents doping in asphalt on pavement properties[J]. Construction and Building Materials,2024,411134447.
    [7]
    孟凡会,张敬浩,杜 娟,等. 煤基固废制泡沫陶瓷的发泡工艺研究及应用进展[J]. 洁净煤技术,2022,28(1):155−165.

    MENG Fanhui,ZHANG Jinghao,DU Juan,et al. Research and application progress of foaming technology of foam ceramics made from coal-based solid waste[J]. Clean Coal Technology,2022,28(1):155−165.
    [8]
    王晓丽,林忠财. 固废基低钙固碳水泥熟料组成设计及烧成过程[J]. 建筑材料学报,2022,25(11):1115−1120.

    WANG Xiaoli,LIN Zhongcai. Composition design and sintering process of solid waste-based low-calcium carbon-fixing cement clinker[J]. Journal of Building Materials,2022,25(11):1115−1120.
    [9]
    李会泉,胡应燕,李少鹏,等. 煤基固废循环利用技术与产品链构建[J]. 资源科学,2021,43(3):456−464.

    LI Huiquan,HU Yingyan,LI Shaopeng,et al. Recycling and product chain of coal- based solid waste[J]. Resources Science,2021,43(3):456−464.
    [10]
    苏博文,史公初,廖亚龙,等. 工业固体废弃物制备二氧化硅功能材料的研究进展[J]. 材料导报,2021,35(3):3026−3032.

    SU Bowen,SHI Gongchu,LIAO Yalong,et al. Research progress on functional materials preparation of silica from industrial solid waste[J]. Materials Reports,2021,35(3):3026−3032.
    [11]
    郭振忠,高 强,李恩全,等. 矸石回填复垦技术在许厂煤矿土地治理中的应用[J]. 煤田地质与勘探,2019,47(S1):62−64.

    GUO Zhenzhong,GAO Qiang,LI Enquan,et al. Application of gangue backfilling and reclamation technology in land management of Xuchang coal mine[J]. Coal Geology & Exploration,2019,47(S1):62−64.
    [12]
    秦琪焜,方健梅,王根柱,等. 煤矸石与城市污泥混合制备植生基质的试验研究[J]. 煤炭科学技术,2022,50(7):304−314.

    QIN Qikun,FANG Jianmei,WANG Genzhu,et al. Experimental study of planting substrate mixed with coal gangue and municipal sludge[J]. Coal Science and Technology,2022,50(7):304−314.
    [13]
    杨 科,赵新元,何 祥,等. 多源煤基固废绿色充填基础理论与技术体系[J]. 煤炭学报,2022,47(12):4201−4216.

    YANG Ke,ZHAO Xinyuan,HE Xiang,et al. Basic theory and key technical of multi-source coal-based solid waste for green backfilling[J]. Journal of China Coal Society,2022,47(12):4201−4216.
    [14]
    周林邦, 孙星海, 刘 泽, 等. 大掺量粉煤灰基矿井充填材料的制备、工作性与微观结构研究[J]. 煤炭学报,2023,48(12):4536−4548.

    ZHOU Linbang, SUN Xinghai, LIU Ze, et al. Study on preparation, working performance microstructure of coal mine filling material with large amount of fly ash[J]. Journal of China Coal Society,2023,48(12):4536−4548.
    [15]
    胡炳南,刘鹏亮,崔 锋,等. 我国充填采煤技术回顾及发展现状[J]. 煤炭科学技术,2020,48(9):39−47.

    HU Bingnan,LIU Pengliang,CUI Feng,et al. Review and development status of backfill coal mining technology in China[J]. Coal Science and Technology,2020,48(9):39−47.
    [16]
    刘建功, 李新旺, 何 团. 我国煤矿充填开采应用现状与发展[J]. 煤炭学报,2020,45(1):141−150.

    LIU Jiangong, LI Xinwang, HE Tuan. Application status and prospect of backfill mining in Chinese coal mines[J]. Journal of China Coal Society,2020,45(1):141−150.
    [17]
    杨 科, 魏 祯, 赵新元, 等. 黄河流域煤电基地固废井下绿色充填开采理论与技术[J]. 煤炭学报,2021,46(S2):925−935.

    YANG Ke, WEI Zhen, ZHAO Xinyuan, et al. Theory and technology of green filling of solid waste in underground mine at coal power base of Yellow River Basin[J]. Journal of China Coal Society,2021,46(S2):925−935.
    [18]
    郭文兵,马志宝,白二虎. 我国煤矿“三下一上”采煤技术现状与展望[J]. 煤炭科学技术,2020,48(9):16−26.

    GUO Wenbing,MA Zhibao,BAI Erhu. Current status and prospect of coal mining technology under buildings,water bodies and railways,and above confined water in China[J]. Coal Science and Technology,2020,48(9):16−26.
    [19]
    朱磊,古文哲,袁超峰,等. 煤矸石浆体充填技术应用与展望[J/OL]. 煤炭科学技术,1−16[2024-04-16]. http://kns.cnki.net/kcms/detail/11.2402.TD.20240401.1023.004.html.

    ZHU Lei,GU Wenzhe,YUAN Chaofeng,et al. Application and prospect of coal gangue slurry filling technology[J/OL]. Coal Science and Technology,1−16[2024-04-16]. http://kns.cnki.net/kcms/detail/11.2402. TD.20240401.1023.004.html.
    [20]
    张吉雄,张 强,周 楠,等. 煤基固废充填开采技术研究进展与展望[J]. 煤炭学报,2022,47(12):15.

    ZHANG Jixiong,ZHANG Qiang,ZHOU Nan,et al. Research progress and prospect of coal based solid waste backfilling mining technology[J]. Journal of China Coal Society,2022,47(12):15.
    [21]
    孙希奎. “三下”采煤膏体充填开采技术研究[J]. 煤炭科学技术,2021,49(1):218−224.

    SUN Xikui. Research on paste backfilling mining technology of coal mining under buildings,water bodies and railways[J]. Coal Science and Technology,2021,49(1):218−224.
    [22]
    YANG Ke,ZHAO Xinyuan,WEI Zhen, et al.Development overview of paste backfill technology in China’s coal mines:a review[J]. Environmental Science and Pollution Research,2021.
    [23]
    吴少康,张俊文,徐佑林,等. 煤矿高水充填材料物理力学特性研究及工程应用[J]. 采矿与安全工程学报,2023,40(4):754−763.

    WU Shaokang,ZHANG Junwen,XU Youlin,et al. Research and engineering application on physical and mechanical properties of coal mine high water filling materials[J]. Journal of Mining & Safety Engineering,2023,40(4):754−763.
    [24]
    许家林. 煤矿绿色开采20年研究及进展[J]. 煤炭科学技术,2020,48(9):1−15.

    XU Jialin. Research and progress of coal mine green mining in 20 years[J]. Coal Science and Technology,2020,48(9):1−15.
    [25]
    刘建功,赵家巍,刘扬,等.煤矿矿区普适性拓展型固体改性充填采煤技术与装备[J/OL].煤炭学报,1−19[2024-04-04].

    LIU Jiangong, ZHAO Jiawei, LIU Yang,et al. Development status and prospect of universal technology of extended solid modification filling mining in coal mine[J].Journal of China Coal Society,1−19[2024-04-04].
    [26]
    梁卫国,郭凤岐,于永军,等.煤矸石井下原位智能分选充填技术研究进展[J/OL].煤炭科学技术,1−14[2024-04-04].

    LIANG Weiguo, GUO Fengqi, YU Yongjun,et al. Research progress on in-situ intelligent sorting and filling technology of coal gangue underground[J]. Coal Science and Technology,1−14 [2024-04-04].
    [27]
    谢和平,张吉雄,高 峰,等. 煤矿负碳高效充填开采理论与技术构想[J]. 煤炭学报,2024,49(1):36−46.

    XIE Heping,ZHANG Jixiong,GAO Feng,et al. Theory and technical conception of carbon negative and efficient backfill mining in coal mines[J/OL]. Journal of China Coal Society,2024,49(1):36−46.
    [28]
    黄艳利,王文峰,卞正富. 新疆煤基固体废弃物处置与资源化利用研究[J]. 煤炭科学技术,2021,49(1):319−330.

    HUANG Yanli,WANG Wenfeng,BIAN Zhengfu. Prospects of resource utilization and disposal of coal-based solid wastes in Xinjiang[J]. Coal Science and Technology,2021,49(1):319−330.
    [29]
    郭洋楠, 李能考, 何瑞敏. 神东矿区煤矸石综合利用研究[J]. 煤炭科学技术,2014,42(6):144−147.

    GUO Yangnan, LI Nengkao, HE Ruimin. Study on comprehensive utilization of coal refuse in Shendong Mining Area[J]. Coal Science and Technology,2014,42(6):144−147.
    [30]
    李 强, 艾 锋, 王 玺, 等. 煤基固废协同矿山土壤生态修复的理论解析与实践探索: 以陕西榆林市为例[J]. 西北地质,2023,56(3):70−77.

    LI Qiang, AI Feng, WANG Xi, et al. Theoretical analysis and practical exploration on ecological restoration of mines with multi-source solid wastes: example from Yulin City, Shaanxi Province[J]. Northwestern Geology,2023,56(3):70−77.
    [31]
    刘小铭, 艾 锋, 李 强, 等. 陕北侏罗纪煤田煤矸石的特性与研究进展[J]. 陕西煤炭,2024,43(03):53−58.

    LIU Xiaoming, AI Feng, LI Qiang, et al. Characteristics of coal gangue of Jurassic coal field in Northern Shaanxi[J]. Shaanxi Coal,2024,43(03):53−58.
    [32]
    山西省发展和改革委员会,山西省煤炭工业厅.山西省“十三五”煤炭工业发展规划[EB/OL].(2017-05-22) [2024-04-16]. https://www.shanxi.gov.cn/zfxxgk/zfxxgkzl/ fdzdgknr/ghxx/201705/t20170522_6446345.shtml
    [33]
    安徽省发展和改革委员会.安徽省煤炭工业发展“十四五”规划[EB/OL].(2022-03-31)[2024-04-16]. https://www.ah.gov.cn/group6/M00/05/A0/wKg8BmKMSNCADp_RAAVaZzPnqrs940.pdf
    [34]
    淮南市自然资源和规划局.淮南市矿产资源总体规划(2021-2025年)[EB/OL].(2023-11-17)[2024-04-16]. https://zrzyj.huainan.gov.cn/group1/M00/18/E4/rB406mVcJhKAMeWFAAW_CIUeHps634.pdf
    [35]
    宁夏回族自治区人民政府. 宁东能源化工基地“十四五”发展规划[E/OL] [1-11-25]. https://www.nx.gov.cn/zwgk/qzfwj/202112/t20211207_3207682.html
    [36]
    山西省统计局.山西省2016-2020统计年鉴[EB/OL]. (2017-2021)[2024-04-16]. https://tjj.shanxi.gov.cn/sxsj-show/yearData
    [37]
    宁夏回族自治区统计局.宁夏2016−2020统计年鉴[EB/OL].(2017-2021)[2024-04-16]. https://nxdata.com.cn/ publish.htm?m=getMorePublish&bc=A01&cn=G01
    [38]
    安徽省统计局.安徽省2016-2020统计年鉴[EB/OL]. (2017-2021)[2024-04-16]. http://tjj.ah.gov.cn/ssah/qwfbjd/ tjnj/index.html
    [39]
    淮南市生态环境局.淮南市“十四五”危险废物工业固体废弃物污染环境防治规划[EB/OL].(2022-05-17) [2024-04-16]. https://www.huainan.gov.cn/public/ 6596035/1259151959.html
    [40]
    王小云,牛艳霞. 煤矸石研究综述:分类、危害及综合利用[J]. 化工矿物与加工,2023,52(11):18−25.

    WANG Xiaoyun,NIU Yanxia. Review of research on coal gangue with its classification,hazards and comprehensive utilization[J]. Industrial Minerals & Processing,2023,52(11):18−25.
    [41]
    王玉涛. 煤矸石固废无害化处置与资源化综合利用现状与展望[J]. 煤田地质与勘探,2022,50(10):54−66.

    WANG Yutao. Status and prospect of harmless disposal and resource comprehensive utilization of solid waste of coal gangue[J]. Coal Geology & Exploration,2022,50(10):54−66.
    [42]
    淮北市经济和信息化局. 淮北工业产业基本情况[E/OL]. [2021-08-13]. https://jxj.huaibei.gov.cn/jxsj/cyfz/56770181.html
    [43]
    刘衢州, 张林林. 淮南矿区煤矸石综合利用的调研分析[J]. 生物化工,2021,7(6):135−137, 141.

    LIU Quzhou, ZHANG Linlin. Investigation and analysison comprehensive utilization of coal gangue in Huainan Mining Area[J]. Biological Chemical Engineering,2021,7(6):135−137, 141.
    [44]
    郭文兵,赵高博,白二虎,等. 中部矿粮复合区采煤沉陷及耕地损毁研究现状与展望[J]. 煤炭学报,2023,48(1):388−401.

    GUO Wenbing,ZHAO Gaobo,BAI Erhu,et al. Research status and prospect on cultivated land damage at surface subsidence basin due to longwall mining in the central coal grain compound area[J]. Journal of China Coal Society,2023,48(1):388−401.
    [45]
    刘 春,俞显忠. 安徽省煤炭资源可利用性和保障程度分析[J]. 中国煤炭,2023,49(6):1−6.

    LIU Chun,YU Xianzhong. Analysis of the availability and guarantee degree of coal resources in Anhui[J]. China Coal,2023,49(6):1−6.
    [46]
    陈登红,华心祝,李寒旭,等. 安徽省煤炭产业发展概况及未来发展趋向[J]. 安徽科技,2020,(10):36-38.

    CHEN Denghong,HUA Xinzhu,LI Hanxu, et al. The development situation and future development trend of coal industry in Anhui Province. Anhui Science & Technology,2020,(10):36-38.
    [47]
    张吉雄,张 强,巨 峰,等. 深部煤炭资源采选充绿色化开采理论与技术[J]. 煤炭学报,2018,43(2):377−389.

    ZHANG Jixiong,ZHANG Qiang,JU Feng,et al. Theory and technique of greening mining integrating mining,separating and backfilling in deep coal resources[J]. Journal of China Coal Society,2018,43(2):377−389.
    [48]
    张吉雄,屠世浩,曹亦俊,等. 煤矿井下煤矸智能分选与充填技术及工程应用[J]. 中国矿业大学学报,2021,50(3):417−430.

    ZHANG Jixiong,TU Shihao,CAO Yijun,et al. Coal gangue intelligent separation and back filling technology and its engineering application in underground coal mine[J]. Journal of China University of Mining & Technology,2021,50(3):417−430.
    [49]
    张吉雄,张 强,巨 峰,等. 煤矿“采选充+X”绿色化开采技术体系与工程实践[J]. 煤炭学报,2019,44(1):64−73.

    ZHANG Jixiong,ZHANG Qiang,JU Feng,et al. Practice and technique of green mining with integration of mining,dressing,backfilling and X in coal resources[J]. Journal of China Coal Society,2019,44(1):64−73.
    [50]
    屠世浩,郝定溢,苗凯军,等. 深部采选充一体化矿井复杂系统协同开采[J]. 中国矿业大学学报,2021,50(3):431−441.

    TU Shihao,HAO Dingyi,MIAO Kaijun,et al. Research on synergetic mining for mining,dressing and backfilling integrated deep mines with complicated systems[J]. Journal of China University of Mining & Technology,2021,50(3):431−441.
    [51]
    张吉雄,周 楠,高 峰,等. 煤矿开采嗣后空间矸石注浆充填方法[J]. 煤炭学报,2023,48(1):150−162.

    ZHANG Jixiong,ZHOU Nan,GAO Feng,et al. Method of gangue grouting filling in subsequent space of coal mining[J]. Journal of China Coal Society,2023,48(1):150−162.
    [52]
    徐文彬,陈 伟,张亚伦,等. 深部充填开采矸石-粉煤灰料浆流变特性研究[J]. 煤炭科学技术,2023,51(3):85−93.

    XU Wenbin,CHEN Wei,ZHANG Yalun,et al. Research on rheological characteristics of gangue-fly ash slurry in deep filling mining[J]. Coal Science and Technology,2023,51(3):85−93.
    [53]
    王小林,郭进平,吴爱祥,等. 基于骨料运移的高浓度充填管道磨损机制[J/OL]. 中国有色金属学报:1−15[2024-01-04]

    WANG Xiaolin,GUO Jinping,WU Aixiang, et al. Wear mechanism of high-concentration filling pipeline based on aggregate migration[J/OL]. The Chinese Journal of Nonferrous Metals,1−15[2024-01-04].
    [54]
    谢和平,高 峰,鞠 杨. 深部岩体力学研究与探索[J]. 岩石力学与工程学报,2015,34(11):2161−2178.

    XIE Heping,GAO Feng,JU Yang. Research and development of rock mechanics in deep ground engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2161−2178.
    [55]
    李 猛,张吉雄,黄 鹏,等. 深部矸石充填采场顶板下沉控制因素及影响规律研究[J]. 采矿与安全工程学报,2022,39(2):227−238.

    LI Meng,ZHANG Jixiong,HUANG Peng,et al. Control factors of stope roof subsidence in deep gangue back filling mining and its influences law[J]. Journal of Mining & Safety Engineering,2022,39(2):227−238.
  • Related Articles

    [1]LEI Guorong, LI Chunyuan, QI Qingxin, WANG Jiamin, DU Weisheng, LI Xiangshang, HE Tuan. Ultrasonic and CT scanning analysis of coal-rock mass under the primary bedding structure[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(3): 74-86. DOI: 10.13199/j.cnki.cst.2023-0314
    [2]ZHANG Liang, QI Qingxin, REN Ting, LI Xiangchun, GAO Ke, LI Chunyuan, LI Xiaopeng, YUAN Honghui. Study on the damage and fracture characteristics of coal rock based on the X-ray micro-CT scanning technology and statistical strength theory[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(S2): 1-12. DOI: 10.13199/j.cnki.cst.2022-2185
    [3]WANG Jiamin, WANG Shouguang, LI Xiangshang, BU Mohua, LUAN Zhaolong, ZHANG Peng. Study on mechanical properties and damage characteristics of granite under thermal shock based on CT scanning[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(8): 58-72. DOI: 10.13199/j.cnki.cst.2023-0180
    [4]LIU Jianhua, WANG Shengwei, SU Dongmei. Geological modeling and fine description of fractures in low coal rank coal reservoirs of Erlian Basin Group[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(5).
    [5]WANG Gang, CHEN Xuechang, HAN Dongyang, QIN Xiangjie, FENG Jing. Research on threshold segmentation algorithm of coal CT images based on improved Otsu[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(1): 264-271. DOI: 10.13199/j.cnki.cst.2021.01.023
    [6]WEN Hu, FAN Shixing, MA Li, GUO Jun, CHENG Xiaojiao, TONG Xiaozhang. CT Scanning Technology on coal-rock damage: a comprehensive review[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (1).
    [7]GONG Weili, WU Xiaodong, ZHANG Zixiang, ZHAO Haiyan. Study on microscopic damage features of coal-rock based on CT scanning[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (9).
    [8]Wang Qiao Zhao Dong Feng Zengchao Zhou Dong Zhang Chao, . Experimental study on fracturing of coal by injection liquid nitrogen in drill based on CT scanning[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (4).
    [9]Wang Changsheng Zhai Peicheng Wang Linsen Wang Chunguang Zhang Xuepeng Wu Xuezhen Jiang Yujing, . Careful features of lithotype cracks based on Micro-CT technology[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (4).
    [10]Study on Seismic CT Technology Applied to Coal Mining Face[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (7).
  • Cited by

    Periodical cited type(10)

    1. 刘纪坤, 张博浩, 王翠霞, 赵兰华, 徐栋梁. 基于DeepLabv3+网络的煤体孔隙识别及分析. 西安科技大学学报. 2025(03)
    2. 王磊,张宇,朱传奇,刘怀谦,陈礼鹏,李少波,吴雨轩. 吸附CO_2煤体静力学特性及细观损伤破坏特征. 岩石力学与工程学报. 2025(01): 56-68 .
    3. 康长豪. 基于数字岩心的鄂尔多斯盆地烟煤的REV计算与非均质性评估. 陕西煤炭. 2025(05): 77-81 .
    4. 刘高峰,关文博,张震,李宝林,刘欢,司念. 基于CT扫描的CO_2相变致裂煤裂隙演化特征. 矿业科学学报. 2024(03): 342-350 .
    5. 肖福坤,刘欢欢,单磊. 基于连通性阈值分割的煤岩裂隙识别方法. 工矿自动化. 2024(08): 127-134 .
    6. 王登科,房禹,魏建平,张宏图,赵立桢,王龙航,夏缘帝,李璐,王少璞,张强,任海慧. 基于深度学习的煤岩Micro-CT裂隙智能提取与应用. 煤炭学报. 2024(08): 3439-3452 .
    7. 张超,程仁辉,秦荣荣,段晨烨,张源福. 单轴载荷下钻孔不同倾角试件能量演化特征. 西安科技大学学报. 2024(05): 805-816 .
    8. 刘大锰,王子豪,陈佳明,邱峰,朱凯,高羚杰,周柯宇,许少博,孙逢瑞. 基于ResNet残差神经网络识别的深部煤层显微组分和微裂缝分类——以鄂尔多斯盆地石炭系本溪组8~#煤层为例. 石油与天然气地质. 2024(06): 1524-1536 .
    9. 李智勇,刘恩强,高辉. 基于YOLOv7的煤样受载裂隙识别研究. 现代矿业. 2024(12): 32-35 .
    10. 王辰,冯增朝,杨涛. 分形理论在煤中甲烷分布研究领域的应用探索. 华北科技学院学报. 2023(05): 108-116 .

    Other cited types(4)

Catalog

    Article views (352) PDF downloads (132) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return