Advance Search
HU Guangqing,HAN Feng,LIU Wei,et al. Study on reasonable determination method of XRD spectral parameters and its response to coal graphitization[J]. Coal Science and Technology,2025,53(2):279−288. DOI: 10.12438/cst.2024-0121
Citation: HU Guangqing,HAN Feng,LIU Wei,et al. Study on reasonable determination method of XRD spectral parameters and its response to coal graphitization[J]. Coal Science and Technology,2025,53(2):279−288. DOI: 10.12438/cst.2024-0121

Study on reasonable determination method of XRD spectral parameters and its response to coal graphitization

More Information
  • Received Date: January 20, 2024
  • Available Online: February 20, 2025
  • Under the background of comprehensive utilization and carbon neutralization of coal-series associated minerals, coal-series graphite has attracted more and more attention from scholars at home and abroad. As one of the important characterization means to study the degree of molecular order and determine the structure of coal microcrystals, XRD spectrum analysis is of great significance to reveal the relationship between the order of carbon microcrystal arrangement and the graphitization degree of coal. In order to obtain the XRD related index parameters of coal more scientifically, quickly and effectively, and constantly improve the evaluation index system of coal-series graphite, taking 7 pairs of metamorphic coals in Huaibei coalfield as the research object, with the help of coal quality analysis, vitrinite reflectance and XRD, the effects of different peak fitting methods and different sample pretreatment methods on XRD spectral parameters were studied, and the effective determination method and response law of coal-series graphite evaluation index based on XRD spectral analysis were discussed. Research shows that; ① Different peak fitting methods have great influence on the evaluation results of coal-series graphite, and whether the bottom back is deducted has more obvious influence on the experimental results than whether the baseline is removed; ② Whether the (γ) peak is considered has a great influence on the experimental results, which directly affects the classification and identification results of the graphitization degree of the samples; ③ By analyzing the XRD spectrum curves of different raw coal and standard Si powder ratios, it is concluded that under the mass ratio of raw coal/SiO2 ≈3∶1, the 2θ value of (002) peak of raw coal sample can be effectively determined by internal standard method, and the experimental effect is equivalent to that of demineralization method. ④ Vdaf and H/C can be recommended as the main coal quality parameters, while La, La/Lc and d002 can be recommended as the main structural parameters. Among them, Vdaf < 20%, H/C > 0.035, La < 4 nm, La/Lc < 1 and d002<0.344 nm can be used as the critical marks for the coal metamorphism in Huaibei coalfield to enter the semi-graphitization stage. The above research results provide a reference for the optimization of evaluation index and the construction of identification system of coal-series graphite in Huaibei coalfield.

  • [1]
    孙升林,吴国强,曹代勇,等. 煤系矿产资源及其发展趋势[J]. 中国煤炭地质,2014,26(11):1−11. doi: 10.3969/j.issn.1674-1803.2014.11.01

    SUN Shenglin,WU Guoqiang,CAO Daiyong,et al. Mineral resources in coal measures and development trend[J]. Coal Geology of China,2014,26(11):1−11. doi: 10.3969/j.issn.1674-1803.2014.11.01
    [2]
    曹代勇,王路,董业绩,等. 煤成石墨演化过程中构造应力作用机制研究[C]. 2017中国地球科学联合学术年会论文集(十七). 中国地球物理学会,2017:31−32.

    CAO Daiyong,WANG Lu,DONG Zhirong,et al. Study on the mechanism of tectonic stress in the evolution of coal-formed graphite [C]. Proceedings of the 2017 China Joint Academic Conference on Earth Sciences (XVII). chinese geophysical society,2017:31−-32.
    [3]
    程乔,陈泉霖,张书光,等. 福建煤系石墨与晶质石墨地质特征及成因分析[J]. 中国煤炭地质,2023,35(10):38−41. doi: 10.3969/j.issn.1674-1803.2023.10.06

    CHENG Qiao,CHEN Quanlin,ZHANG Shuguang,et al. Geological characteristics and genesis analysis of coal-measure graphite and crystalline graphite in Fujian[J]. Coal Geology of China,2023,35(10):38−41. doi: 10.3969/j.issn.1674-1803.2023.10.06
    [4]
    赵训林,王路,李靖,等. 湖南鲁塘矿区煤系石墨空间分布特征与深部找矿方向[J]. 中国煤炭地质,2023,35(8):11−16. doi: 10.3969/j.issn.1674-1803.2023.08.03

    ZHAO Xunlin,WANG Lu,LI Jing,et al. Spatial distribution and deep prospecting of coal-based graphite in lutang mines,Hunan[J]. Coal Geology of China,2023,35(8):11−16. doi: 10.3969/j.issn.1674-1803.2023.08.03
    [5]
    邹勇军,祁星,肖富强,等. 江西省煤炭资源分布特征及勘探方向[J]. 东华理工大学学报(自然科学版),2023,46(4):376−386. doi: 10.3969/j.issn.1674-3504.2023.04.005

    ZOU Yongjun,QI Xing,XIAO Fuqiang,et al. Distribution characteristics and exploration direction of coal resources in Jiangxi Province[J]. Journal of East China University of Technology (Natural Science),2023,46(4):376−386. doi: 10.3969/j.issn.1674-3504.2023.04.005
    [6]
    刘钦甫,袁亮,李阔,等. 不同变质程度煤系石墨结构特征[J]. 地球科学,2018,43(5):1663−1669.

    LIU Qinfu,YUAN Liang,LI Kuo,et al. Structure characteristics of different metamorphic grade coal-based graphites[J]. Earth Science,2018,43(5):1663−1669.
    [7]
    曹代勇,李小明,邓觉梅. 煤化作用与构造-热事件的耦合效应研究:盆地动力学过程的地质记录[J]. 地学前缘,2009,16(4):52−60. doi: 10.3321/j.issn:1005-2321.2009.04.006

    CAO Daiyong,LI Xiaoming,DENG Juemei. Coupling effect between coalification and tectonic-thermal events:Geological records of geodynamics of sedimentary basin[J]. Earth Science Frontiers,2009,16(4):52−60. doi: 10.3321/j.issn:1005-2321.2009.04.006
    [8]
    李焕同,王楠,朱志蓉,等. 湖南寒婆坳矿区热变质煤结构演化及其矿物学特征响应[J]. 地质学报,2020,94(11):3503−3514. doi: 10.3969/j.issn.0001-5717.2020.11.022

    LI Huantong,WANG Nan,ZHU Zhirong,et al. Structural evolution and mineralogical characteristics of magmatic metamorphic coals in the Hanpoao coal mining area,Hunan Province[J]. Acta Geologica Sinica,2020,94(11):3503−3514. doi: 10.3969/j.issn.0001-5717.2020.11.022
    [9]
    ROSS J V,BUSTIN R M. The role of strain energy in creep graphitization of anthracite[J]. Nature,1990,343:58−60. doi: 10.1038/343058a0
    [10]
    秦勇,姜波,宋党育,等. 高煤级煤碳结构13C NMR演化及其机理探讨[J]. 煤炭学报,1998,23(6):76−80.

    QIN Yong,JIANG Bo,SONG Dangyu,et al. Charecteristics and mechanism on the 13 c nmr evolution of the carbon structure in the high rank coals[J]. Journal of China Coal Society,1998,23(6):76−80.
    [11]
    秦勇. 再论煤中大分子基本结构单元演化的拼叠作用[J]. 地学前缘,1999,6(S1):29−34. doi: 10.3321/j.issn:1005-2321.1999.z1.005

    QIN Yong. Re-discussion on the overlapping effect of the evolution of macromolecular basic structural units in coal[J]. Earth Science Frontiers,1999,6(S1):29−34. doi: 10.3321/j.issn:1005-2321.1999.z1.005
    [12]
    安文博,王来贵,刘向峰,等. 基于FTIR和XRD法分析阜新长焰煤结构特征[J]. 高分子通报,2018(3):67−74.

    AN Wenbo,WANG Laigui,LIU Xiangfeng,et al. Analysis the structural characteristics of Fuxin long flame coal based on FTIR and XRD experiments[J]. Polymer Bulletin,2018(3):67−74.
    [13]
    王超,赵友男,王震威,等. 用XRD表征煤变质程度的改进方法[J]. 煤田地质与勘探,2019,47(6):39−44.

    WANG Chao,ZHAO Younan,WANG Zhenwei,et al. An improved method for characterizing coal metamorphism by XRD[J]. Coal Geology & Exploration,2019,47(6):39−44.
    [14]
    WANG T,XIAO Y J,YANG Y H,et al. Fourier transform surface-enhanced Raman spectra of Fulvic acid from weathered coal adsorbed on gold electrodes[J]. Journal of Environmental Science and Health,Part A,1999,34(3):749−765. doi: 10.1080/10934529909376863
    [15]
    Wada H,Tomita T,Matsuura K,et al. Contributions to Mineralogy and Petrology,1994,118(3):217.
    [16]
    李金泽,王杰平,孙章. 煤及其热解过程中微观结构的光谱学研究进展[J]. 燃料与化工,2020,51(2):8−13.

    LI Jinze,WANG Jieping,SUN Zhang. Progress of microstructures of coals and those during pyrolysis process by spectroscopy[J]. Fuel & Chemical Processes,2020,51(2):8−13.
    [17]
    许聚良,鄢文,吴大军. XRD分峰拟合法测定炭材料的石墨化度和结晶度[J]. 武汉科技大学学报,2009,32(5):522−525. doi: 10.3969/j.issn.1674-3644.2009.05.018

    XU Juliang,YAN Wen,WU Dajun. Measuring the graphitization and crystallinity of carbon material by XRD peak separation method[J]. Journal of Wuhan University of Science and Technology,2009,32(5):522−525. doi: 10.3969/j.issn.1674-3644.2009.05.018
    [18]
    李焕同,曹代勇,张卫国,等. 高煤级煤石墨化轨迹阶段性的XRD和Raman光谱表征[J]. 光谱学与光谱分析,2021,41(8):2491−2498.

    LI Huantong,CAO Daiyong,ZHANG Weiguo,et al. XRD and Raman spectroscopy characterization of graphitization trajectories of high-rank coal[J]. Spectroscopy and Spectral Analysis,2021,41(8):2491−2498.
    [19]
    钱崇梁,周桂芝,黄启忠. XRD 测定炭素材料的石墨化度[J]. 中南工业大学学报 2001 32(3):285-288.

    QIAN Chongliang,ZHOU Guizhi,HUANG Qizhong. Determination of graphitization degree of carbon materials by. XRD [J]. Journal of Central South University of Technology 200132 (3):285-288.
    [20]
    SONIBARE O O, HAEGER T, FOLEY S F. Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy[J]. Energy,2010,35(12):5347−5353.
    [21]
    祁景玉. X射线结构分析[M]. 上海:同济大学出版社,2003:77-79.
    [22]
    相建华,曾凡桂,梁虎珍,等. 不同变质程度煤的碳结构特征及其演化机制[J]. 煤炭学报,2016,41(6):1498−1506.

    XIANG Jianhua,ZENG Fangui,LIANG Huzhen,et al. Carbon structure characteristics and evolution mechanism of different rank coals[J]. Journal of China Coal Society,2016,41(6):1498−1506.
    [23]
    陈蔚然. 关于石墨化度计算公式[J]. 炭素技术,1983(6):28−31.

    CHEN Weiran. On the calculation formula of graphitization degree[J]. Carbon Techniques,1983(6):28−31.
    [24]
    范青杰,宋岩,赖仕全,等. 煤系针状焦原料在成焦过程中的XRD结构分析[J]. 光谱学与光谱分析,2022,42(6):1979−1984. doi: 10.3964/j.issn.1000-0593(2022)06-1979-06

    FAN Qingjie,SONG Yan,LAI Shiquan,et al. XRD structural analysis of raw material used as coal-based needle coke in the coking process[J]. Spectroscopy and Spectral Analysis,2022,42(6):1979−1984. doi: 10.3964/j.issn.1000-0593(2022)06-1979-06
    [25]
    曹代勇,王路,朱文卿,等. 关于煤系石墨鉴定标准的讨论[J]. 煤田地质与勘探,2022,50(12):105−113. doi: 10.12363/issn.1001-1986.22.07.0527

    CAO Daiyong,WANG Lu,ZHU Wenqing,et al. Discussion on identification standard of coal-measure graphite[J]. Coal Geology & Exploration,2022,50(12):105−113. doi: 10.12363/issn.1001-1986.22.07.0527
    [26]
    李鑫,凌开成,何敏,等. 脱矿物质过程对煤结构影响的研究[J]. 洁净煤技术,2009,15(3):39−42. doi: 10.3969/j.issn.1006-6772.2009.03.011

    LI Xin,LING Kaicheng,HE Min,et al. Study on coal structure after removal of the mineral matter[J]. Clean Coal Technology,2009,15(3):39−42. doi: 10.3969/j.issn.1006-6772.2009.03.011
    [27]
    尉琳琳, 李可可, 刘臻, 等. 以神东烟煤为原料制备石墨烯及其表征[J/OL]. 洁净煤技术, 2023: 1−9. (2023−11−22). https://kns.cnki.net/kcms/detail/11.3676.td.20231121.1510.002.html.

    YU Linlin, LI Keke, LIU Zhen, et al. Preparation and characterization of graphene from Shendong bituminous coal[J/OL]. Clean Coal Technology, 2023: 1−9. (2023−11−22). https://kns.cnki.net/kcms/detail/11.3676.td.20231121.1510.002.html.
    [28]
    秦勇. 中国高煤级煤的显微岩石学特征及结构演化[M]. 徐州:中国矿业大学社,1994.
    [29]
    汪昱辉,姚素平. 煤显微组分对煤石墨化作用的影响[J]. 地球科学进展,2022,37(6):600−611. doi: 10.11867/j.issn.1001-8166.2022.015

    WANG Yuhui,YAO Suping. Influence of coal macerals on graphitization[J]. Advances in Earth Science,2022,37(6):600−611. doi: 10.11867/j.issn.1001-8166.2022.015
    [30]
    廖慧元. 隐晶质石墨与无烟煤的简单鉴别[J]. 非金属矿,1994,17(2):10−11.

    LIAO Huiyuan. Simple identification of aphanitic graphite and anthracite[J]. Non-Metallic Mines,1994,17(2):10−11.
    [31]
    KWIECIŃSKA B,PETERSEN H I. Graphite,semi-graphite,natural coke,and natural char classification:ICCP system[J]. International Journal of Coal Geology,2004,57(2):99−116. doi: 10.1016/j.coal.2003.09.003
    [32]
    FRANKLIN R E. The structure of graphitic carbons[J]. Acta Crystallographica,1951,4(3):253−261. doi: 10.1107/S0365110X51000842
    [33]
    RODRIGUES S,MARQUES M,SUÁREZ-RUIZ I,et al. Microstructural investigations of natural and synthetic graphites and semi-graphites[J]. International Journal of Coal Geology,2013,111:67−79. doi: 10.1016/j.coal.2012.06.013
    [34]
    曹代勇,魏迎春,李阳,等. 煤系石墨鉴别指标厘定及分类分级体系构建[J]. 煤炭学报,2021,46(6):1833−1846.

    CAO Daiyong,WEI Yingchun,LI Yang,et al. Determination of identification index and construction of classification and classification system of coal measures graphite[J]. Journal of China Coal Society,2021,46(6):1833−1846.
    [35]
    董业绩,曹代勇,王路,等. 地质勘查阶段煤系石墨与无烟煤的划分指标探究[J]. 煤田地质与勘探,2018,46(1):8−12. doi: 10.3969/j.issn.1001-1986.2018.01.002

    DONG Yeji,CAO Daiyong,WANG Lu,et al. Indicators for partitioning graphite and anthracite in coal measures during geological exploration phase[J]. Coal Geology & Exploration,2018,46(1):8−12. doi: 10.3969/j.issn.1001-1986.2018.01.002
    [36]
    李阔,刘钦甫,张帅,等. 煤系石墨显微组分与结构特征[J]. 矿物学报,2021,41(1):101−108.

    LI Kuo,LIU Qinfu,ZHANG Shuai,et al. Characteristics of microscopically distinguishable components and structures of the coaly graphite[J]. Acta Mineralogica Sinica,2021,41(1):101−108.
    [37]
    王路. 煤系石墨的构造-热成矿机制研究[D]. 北京:中国矿业大学(北京),2020.

    WANG Lu. Study on tectonic-thermal metallogenic mechanism of coal-bearing graphite[D]. Beijing:China University of Mining & Technology,Beijing,2020.

Catalog

    Article views (52) PDF downloads (21) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return