Advance Search
ZHANG Yuhao,REN Lachun,YAO Peng,et al. Research on temperature effect and application of strength evolution of spray layer of wet spraying support of roadway[J]. Coal Science and Technology,2025,53(S1):1−12. DOI: 10.12438/cst.2024-0118
Citation: ZHANG Yuhao,REN Lachun,YAO Peng,et al. Research on temperature effect and application of strength evolution of spray layer of wet spraying support of roadway[J]. Coal Science and Technology,2025,53(S1):1−12. DOI: 10.12438/cst.2024-0118

Research on temperature effect and application of strength evolution of spray layer of wet spraying support of roadway

More Information
  • Received Date: January 20, 2024
  • Available Online: April 09, 2025
  • The safety of geotechnical engineering in the cold zone environment is highly dependent on the stability of the supporting structure. Wet-sprayed concrete has been gradually applied to the support of roadways with broken peripheral rocks because of its advantages of low rebound and the high strength of the sprayed layer. However, the influence of the temperature effect is not fully considered in current engineering practice. In order to explore the influence of temperature on the evolution of the strength of the wet-sprayed concrete spray layer in the roadway support of mines in cold areas, the evolution of the strength of the wet-sprayed concrete spray layer in a mine in a cold environment. For the cold environment of a mine wet spray concrete technology application process, spray layer thickness is small, low strength, easy to crack, and other phenomena, respectively, to carry out the temperature on the wet spray concrete spray layer strength development factors. Scanning electron microscope observation was used to analyze the micro-structure of wet-sprayed concrete hardened slurry. As well as the application of XRD to analyze the hydration reaction products of wet-sprayed concrete at different temperatures and ages. It was found that the strength evolution of the spray layer of wet sprayed concrete roadway support in a cold area has an obvious temperature effect. In the temperature range of 0 ~ 20 °C, when the curing temperature is lower than 10 °C, the compressive strength of the spray layer develops faster with the increase in temperature. Especially when the temperature is low (0 ℃ or so) to observe the micro-structure of the surface of the loose porous pore, cracks more; When the maintenance temperature is higher than 15 ℃, the development of spray layer compressive strength slows down with the increase in temperature, but the micro-structure is gradually dense and the structure is more compact. The temperature affects the hydration reaction of wet-sprayed concrete through the influence of the micro-structure, the initial pore cleavage in the micro-structure of the wet-sprayed concrete and the interface strength of the transition zone of the aggregate, which directly affects the macroscopic mechanical properties of wet-sprayed concrete. According to the results of indoor experiments and the effectiveness of field engineering application, the optimization measures for wet-sprayed concrete support in a cold environment are proposed, which can effectively improve the strength of the sprayed layer structure. The engineering application shows that the strength of the sprayed layer of wet-sprayed concrete in 28 days after the improvement is increased from 19.5 MPa to 32.9 MPa, which is improved by about 40%, the surface of the sprayed layer is dense and smooth, and the production capacity of the sprayed layer of wet-sprayed concrete is increased by about 25%. The research conducted favorable outcomes in construction and served as an example for the implementation of wet-sprayed concrete in projects involving comparable engineering conditions.

  • [1]
    CHEN L J,SUN Z J,LIU G M,et al. Spraying characteristics of mining wet shotcrete[J]. Construction and Building Materials,2022,316:125888.
    [2]
    GALAN I,BALDERMANN A,KUSTERLE W,et al. Durability of shotcrete for underground support–Review and update[J]. Construction and Building Materials,2019,202:465−493.
    [3]
    白金超,成云海,郑强强,等. 干、湿喷混凝土受载力学特性及破坏机制[J]. 煤炭学报,2020,45(8):2777−2786.

    BAI Jinchao,CHENG Yunhai,ZHENG Qiangqiang,et al. Mechanical characteristics and failure mechanism of dry and wet shotcrete under loading[J]. Journal of China Coal Society,2020,45(8):2777−2786.
    [4]
    SU C,WU Z,ZHENG X K. Analysis of rebound rate of wet shotcrete based on experiment and discrete element method[J]. Shock and Vibration,2022,2022(1):1840580.
    [5]
    SMANIOTTO S,NEUNER M,CORDES T,et al. Experimental study of a wet mix shotcrete for primary tunnel linings:Part II:Shrinkage,creep,thermal and hygral behavior of shotcrete[J]. Engineering Fracture Mechanics,2022,267:108410.
    [6]
    LI L,WU A X,WANG Y M,et al. Mechanism of wet shotcrete interacting with rock in support systems[J]. Journal of Central South University,2013,20(3):821−829.
    [7]
    JENNINGS H M,KUMAR A,SANT G. Quantitative discrimination of the nano-pore-structure of cement paste during drying:New insights from water sorption isotherms[J]. Cement and Concrete Research,2015,76:27−36.
    [8]
    柏建彪,王襄禹,贾明魁,等. 深部软岩巷道支护原理及应用[J]. 岩土工程学报,2008,30(5):632−635.

    BAI Jianbiao,WANG Xiangyu,JIA Mingkui,et al. Theory and application of supporting in deep soft roadways[J]. Chinese Journal of Geotechnical Engineering,2008,30(5):632−635.
    [9]
    张明天,陈结,姜德义,等. 湿喷混凝土支护强度影响规律探究及改进[J]. 中国安全生产科学技术,2021,17(9):25−31.

    ZHANG Mingtian,CHEN Jie,JIANG Deyi,et al. Research on influence laws for support strength of wet shotcrete and improvement[J]. Journal of Safety Science and Technology,2021,17(9):25−31.
    [10]
    赵国彦,马举,彭康,等. 基于响应面法的高寒矿山充填配比优化[J]. 北京科技大学学报,2013,35(5):559−565.

    ZHAO Guoyan,MA Ju,PENG Kang,et al. Mix ratio optimization of alpine mine backfill based on the response surface method[J]. Journal of University of Science and Technology Beijing,2013,35(5):559−565.
    [11]
    PICHLER C,SCHMID M,TRAXL R,et al. Influence of curing temperature dependent microstructure on early-age concrete strength development[J]. Cement and Concrete Research,2017,102:48−59.
    [12]
    姚松,韩斌,吴爱祥,等. 温度对高寒矿山湿喷混凝土强度影响规律及工程应用研究[J]. 采矿与安全工程学报,2017,34(2):384−390.

    YAO Song,HAN Bin,WU Aixiang,et al. The effect of temperature on strength of wet shotcrete in cold mining areas and its engineering application[J]. Journal of Mining & Safety Engineering,2017,34(2):384−390.
    [13]
    李克庆,胡亚飞,韩斌,等. 低温下湿喷混凝土强度预测与强度损伤[J]. 中南大学学报(自然科学版),2021,52(5):1581−1590.

    LI Keqing,HU Yafei,HAN Bin,et al. Strength prediction and strength damage of wet shotcrete at low temperature[J]. Journal of Central South University (Science and Technology),2021,52(5):1581−1590.
    [14]
    吴中伟. 混凝土科学技术的反思[J]. 混凝土及加筋混凝土,1988(6):4−6.

    WU Zhongwei. Reflection on concrete science and technology[J]. Concrete,1988(6):4−6.
    [15]
    吴中伟. 绿色高性能混凝土:混凝土的发展方向[J]. 混凝土与水泥制品,1998(1):3−6.

    WU Zhongwei. Green high performance concrete- the trend of concrete development[J]. China Concrete and Cement Products,1998(1):3−6.
    [16]
    THOMAS E. Characteristics and behaviour of hydraulic fill material[D]. Brisbane:University of Queensland,1969:42−55.
    [17]
    MALMGREN L,NORDLUND E,ROLUND S. Adhesion strength and shrinkage of shotcrete[J]. Tunnelling and Underground Space Technology,2005,20(1):33−48.
    [18]
    HUSEM M,GOZUTOK S. The effects of low temperature curing on the compressive strength of ordinary and high performance concrete[J]. Construction and Building Materials,2005,19(1):49−53.
    [19]
    GALLUCCI E,ZHANG X,SCRIVENER K L. Effect of temperature on the microstructure of calcium silicate hydrate (C-S-H)[J]. Cement and Concrete Research,2013,53:185−195.
    [20]
    韩斌,王贤来,文有道. 不良岩体巷道的湿喷混凝土支护技术[J]. 中南大学学报(自然科学版),2010,41(6):2381−2385.

    HAN Bin,WANG Xianlai,WEN Youdao. Drift support technology with wet shotcrete method in weak rock mass[J]. Journal of Central South University (Science and Technology),2010,41(6):2381−2385.
    [21]
    吴爱祥,于少峰,王贻明. 寒冷期湿喷混凝土温度影响效应与纤维掺量优化[J]. 建筑科学与工程学报,2017,34(6):44−50.

    WU Aixiang,YU Shaofeng,WANG Yiming. Temperature effects of wet shotcrete and optimization of fiber content during cold period[J]. Journal of Architecture and Civil Engineering,2017,34(6):44−50.
    [22]
    吴爱祥,孙伟,韩斌,等. 温度对寒冷矿区湿喷支护强度影响及工程应用研究[J]. 采矿与安全工程学报,2015,32(5):697−705.

    WU Aixiang,SUN Wei,HAN Bin,et al. Study on the influence of temperature on the strength of wet shotcreting in cold mining areas & its application[J]. Journal of Mining & Safety Engineering,2015,32(5):697−705.
    [23]
    赵金田,朱清云,石勇,等. 高寒矿区湿喷混凝土支护应用研究[J]. 金属矿山,2016(10):21−25.

    ZHAO Jintian,ZHU Qingyun,SHI Yong,et al. Application research of wet shotcrete support in cold mining areas[J]. Metal Mine,2016(10):21−25.
    [24]
    严健,何川,朱虹宇,等. 寒区隧道施工期通风升温及效果分析[J]. 铁道科学与工程学报,2020,17(2):379−387.

    YAN Jian,HE Chuan,ZHU Hongyu,et al. Heating ventilation and effect analysis during construction period for tunnels in cold region[J]. Journal of Railway Science and Engineering,2020,17(2):379−387.
    [25]
    柳皎,李夕兵,宫凤强,等. 基于安全学原理的大跨浅埋隧道施工风险辨识[J]. 地下空间与工程学报,2015,11(3):766−773.

    LIU Jiao,LI Xibing,GONG Fengqiang,et al. Risk identification of large-span and shallow overburden tunnel construction based on safety system engineering[J]. Chinese Journal of Underground Space and Engineering,2015,11(3):766−773.
    [26]
    CHANG C S,YIN Z Y. Micromechanical modeling for behavior of silty sand with influence of fine content[J]. International Journal of Solids and Structures,2011,48(19):2655−2667.
    [27]
    DUAN L M,ZHANG Y H,LAI J X. Influence of ground temperature on shotcrete-to-rock adhesion in tunnels[J]. Advances in Materials Science and Engineering,2019,2019(1):8709087.
    [28]
    吴中伟. 绿色高性能混凝土与科技创新[J]. 建筑材料学报,1998,1(1):1−7.

    WU Zhongwei. Green high performance concrete and innovation[J]. Journal of Building Materials,1998,1(1):1−7.
    [29]
    LIU P,YU Z W,GUO F Q,et al. Temperature response in concrete under natural environment[J]. Construction and Building Materials,2015,98:713−721.
    [30]
    赵金侠,黄亮,谢建和. 不同配比和养护条件对超高性能混凝土微观结构的影响[J]. 中国公路学报,2019,32(7):111−119.

    ZHAO Jinxia,HUANG Liang,XIE Jianhe. Effects of mix proportion and curing condition on the microstructure of ultra-high performance concrete[J]. China Journal of Highway and Transport,2019,32(7):111−119.
    [31]
    徐泽华,赵庆新,张津瑞,等. 界面过渡区对混凝土徐变性能的影响[J]. 硅酸盐学报,2021,49(2):347−356.

    XU Zehua,ZHAO Qingxin,ZHANG Jinrui,et al. Influence of interface transition zone on creep properties of concrete[J]. Journal of the Chinese Ceramic Society,2021,49(2):347−356.
    [32]
    王志良,张跃,申林方,等. 考虑微观结构影响的混凝土界面过渡区裂隙渗流-溶蚀耦合模型[J]. 工程力学,2021,38(6):133−142.

    WANG Zhiliang,ZHANG Yue,SHEN Linfang,et al. Coupled model of fracture seepage and dissolution in concrete interface transition zone considering the influence of microstructure[J]. Engineering Mechanics,2021,38(6):133−142.
    [33]
    孙雅珍,于阳,王金昌,等. 考虑界面效应的内张钢圈加固盾构管片结构力学性能研究[J]. 岩土工程学报,2022,44(2):343−351.

    SUN Yazhen,YU Yang,WANG Jinchang,et al. Mechanical properties of linings of shield tunnel strengthened by steel plates considering interface effects[J]. Chinese Journal of Geotechnical Engineering,2022,44(2):343−351.
    [34]
    谢松平, 王凯星, 杨泽沛, 等. 超高性能混凝土(UHPC)高温力学性能研究进展[J]. 中国水运(下半月),2020(14):135−138.

    XIE Songping, WANG Kaixing, YANG Zepei, et al. Research progress on mechanical properties of ultra-high performance concrete (UHPC) at high temperature[J]. China Water Transport,2020(14):135−138.
    [35]
    李胜林, 陈云瑞, 张明悦, 等. 静载历史下的损伤对混凝土动态抗压性能影响研究[J]. 北京理工大学学报,2023,43(5):470−477.

    LI Shenglin, CHEN Yunrui, ZHANG Mingyue, et al. Research on the dynamic compressive performance of concrete due to the damage static load history[J]. Transactions of Beijing Institute of Technology,2023,43(5):470−477.
    [36]
    朱伯芳. 混凝土极限拉伸变形与龄期及抗拉、抗压强度的关系[J]. 土木工程学报,1996,29(5):72−76.

    ZHU Bofang. Relation between extensibility, age, tensile and compressive strength of concrete[J]. China Civil Engineering Journal,1996,29(5):72−76.
    [37]
    吴福飞,侍克斌,董双快,等. 硫酸盐镁盐复合侵蚀后混凝土的微观形貌特征[J]. 农业工程学报,2015,31(9):140−146.

    WU Fufei,SHI Kebin,DONG Shuangkuai,et al. Microstructure characteristics of concrete after erosion of magnesium salts and sulfates[J]. Transactions of the Chinese Society of Agricultural Engineering,2015,31(9):140−146.
    [38]
    牛荻涛,王家滨,马蕊. 干湿交替喷射混凝土硫酸盐侵蚀试验[J]. 中国公路学报,2016,29(2):82−89.

    NIU Ditao,WANG Jiabin,MA Rui. Sulfate attack test of shotcrete under dry-wet alternation[J]. China Journal of Highway and Transport,2016,29(2):82−89.
    [39]
    徐小丽,高峰,张志镇,等. 高温后花岗岩能量及结构效应研究[J]. 岩土工程学报,2014,36(5):961−968.

    XU Xiaoli,GAO Feng,ZHANG Zhizhen,et al. Energy and structural effects of granite after high temperature[J]. Chinese Journal of Geotechnical Engineering,2014,36(5):961−968.
    [40]
    曾召田,付慧丽,吕海波,等. 水泥胶结钙质砂热传导特性及微观机制[J]. 岩土工程学报,2021,43(12):2330−2338.

    ZENG Zhaotian,FU Huili,LYU Haibo,et al. Thermal conduction characteristics and microcosmic mechanism of cement-cemented calcareous sand[J]. Chinese Journal of Geotechnical Engineering,2021,43(12):2330−2338.
  • Cited by

    Periodical cited type(9)

    1. 苗常盛,李雪交,杨俊辉,张继达,张文喆. 煤矿巷道中分岔管道瓦斯爆炸特性研究. 火工品. 2025(03): 108-112 .
    2. 丁文学,叶青,贾真真,王维建. H型隧道双爆源气体爆炸传播特性模拟研究. 中国安全生产科学技术. 2024(04): 122-128 .
    3. 王涛,董哲,盛禹淮,南凡,杨哲,杨鹏,孟帆,罗振敏. 卤代烷气体灭火剂促进-抑制瓦斯燃爆特性试验. 煤炭科学技术. 2024(04): 265-274 . 本站查看
    4. 司荣军,牛宜辉,王磊,黄子超,贾泉升. 煤矿瓦斯煤尘爆炸的动力学特性研究进展. 工程爆破. 2023(01): 30-39 .
    5. 李敏,林志军,鲁义,施式亮,王德明,王丹. 基于模糊贝叶斯网络的煤矿瓦斯爆炸风险评估. 煤炭学报. 2023(S2): 626-637 .
    6. 宋双林. 自吸式泡沫发生器发泡机理及其优化设计. 煤炭科学技术. 2022(06): 239-244 . 本站查看
    7. 镐振,孙光中. 特厚煤层回采巷道塑性区形态特征及演化规律研究. 煤炭科学技术. 2022(06): 77-83 . 本站查看
    8. 高智慧,李雨成,张欢,赵涛,李俊桥. 瓦斯爆炸在角联通风管网中的传播特性研究. 中国安全生产科学技术. 2022(08): 72-78 .
    9. 贾进章,田秀媛,赵丹,王枫潇. 角联管网瓦斯爆炸冲击波与火焰波的传播特性. 爆破器材. 2022(05): 24-30 .

    Other cited types(3)

Catalog

    Article views (52) PDF downloads (43) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return