Advance Search
LI Tao,YANG Tao,LIU Jincheng,et al. Study on suspension state stability of coal-based solid waste filling slurry of long-distance pipeline transportation[J]. Coal Science and Technology,2025,53(2):444−456. DOI: 10.12438/cst.2024-0104
Citation: LI Tao,YANG Tao,LIU Jincheng,et al. Study on suspension state stability of coal-based solid waste filling slurry of long-distance pipeline transportation[J]. Coal Science and Technology,2025,53(2):444−456. DOI: 10.12438/cst.2024-0104

Study on suspension state stability of coal-based solid waste filling slurry of long-distance pipeline transportation

More Information
  • Received Date: January 17, 2024
  • Available Online: February 18, 2025
  • The coal-based solid waste filling mining technology is a significant representative technology for achieving green and low-carbon coal mining. Filling the goaf with coal-based solid waste slurry can effectively control the movement of roof strata and prevent derived disasters. The research is conducted on the stability of slurry suspending state, in response to the issue of strong sensitivity of particle suspension in long-distance pipeline transportation of coal-based solid waste filling slurry, which can easily lead to unstable slurry concentration then pipeline blockage or bursts, under the developing trend of intelligent and large-scale coal mining. The aim is to reduce pipe blockage and burst accidents of long-distance filling mining of coal-based solid waste. Firstly, by applying orthogonal experiments, range analysis, variance analysis, and significance tests, the primary and secondary factors influencing the rheological properties of coal-based solid waste filling slurry and their significance are evaluated. The order of primary and secondary influencing factors is determined as slurry concentration > cement addition > fly ash addition, and the order of effect significance is slurry concentration > cement addition > fly ash addition. The mass concentration of coal-based solid waste filling slurry is determined to be 75.2%, with the optimal ratio of cement∶fly ash∶coal gangue∶water as 12∶19.5∶43.7∶24.8. Secondly, a model for solid particle sedimentation based on the solid-liquid two-phase carrier suspension fluid is established for long-distance pipeline transportation of coal-based solid waste filling slurry. The density of the solid-liquid two-phase carrier suspension fluid is determined to be 1626.82 kg/m3, through the calculation of critical non-settling particle diameter mechanical model, granularity screening experiment, and rheological characteristic parameter test. The coal-based solid waste filling slurry is identified as an unstable slurry, lacking long-term suspension stability for long-distance pipeline transportation. Finally, the critical suspension yield stress value and critical suspension plastic viscosity value required for the coal-based solid waste filling slurry to transition into a suspension-stable slurry are determined to be 172.87 Pa and 2.39 Pa·s. A method is proposed to establish a stable slurry system for long-distance pipeline transportation of coal-based solid waste filling slurry by adding a suspending agent, with the aim of solving the practical engineering problems of long-distance filling mining of coal-based solid waste in coal mines.

  • [1]
    许家林. 煤矿绿色开采20年研究及进展[J]. 煤炭科学技术,2020,48(9):1−15.

    XU Jialin. Research and progress of coal mine green mining in 20 years[J]. Coal Science and Technology,2020,48(9):1−15.
    [2]
    张吉雄,张强,周楠,等. 煤基固废充填开采技术研究进展与展望[J]. 煤炭学报,2022,47(12):4167−4181.

    ZHANG Jixiong,ZHANG Qiang,ZHOU Nan,et al. Research progress and prospect of coal based solid waste backfilling mining technology[J]. Journal of China Coal Society,2022,47(12):4167−4181.
    [3]
    刘建功,赵家巍,刘扬,等. 煤矿矿区普适性拓展型固体改性充填采煤技术与装备[J]. 煤炭学报,2024,49(1):380−399.

    LIU Jiangong,ZHAO Jiawei,LIU Yang,et al. General-purpose expasion type solid modlfication backfilling mining technology and equipment for coal mines[J]. Journal of China Coal Society,2024,49(1):380−399.
    [4]
    LIU L,ZHOU P,FENG Y,et al. Quantitative investigation on micro-parameters of cemented paste backfill and its sensitivity analysis[J]. Journal of Central South University,2020,27(1):267−276. doi: 10.1007/s11771-020-4294-1
    [5]
    吴凡,杨晓炳,杨志强,等. 高浓度粗骨料充填料浆抗离析特性及其数学模型[J]. 中南大学学报(自然科学版),2020,51(5):1309−1316. doi: 10.11817/j.issn.1672-7207.2020.05.015

    WU Fan,YANG Xiaobing,YANG Zhiqiang,et al. Anti-segregation property and its mathematical model of high concentration filling slurry with coarse aggregate[J]. Journal of Central South University (Science and Technology),2020,51(5):1309−1316. doi: 10.11817/j.issn.1672-7207.2020.05.015
    [6]
    于润沧. 金属矿山胶结充填工艺技术面临的新挑战:第十届中国充填采矿技术与装备大会致辞[J]. 矿业研究与开发,2020,40(12):1.
    [7]
    于润沧,刘诚,朱瑞军,等. 矿山信息模型:矿业信息化的发展方向[J]. 中国矿山工程,2018,47(5):1−3,13. doi: 10.3969/j.issn.1672-609X.2018.05.001

    YU Runcang,LIU Cheng,ZHU Ruijun,et al. Mine information model:The development direction of mining informatization[J]. China Mine Engineering,2018,47(5):1−3,13. doi: 10.3969/j.issn.1672-609X.2018.05.001
    [8]
    王绍周,等. 粒状物料的浆体管道输送[M]. 北京:海洋出版社,1998.
    [9]
    王小林,郭进平,吴爱祥,等. 基于骨料运移的高浓度充填管道磨损机制[J]. 中国有色金属学报,2024,34(6):2099−2111. doi: 10.11817/j.ysxb.1004.0609.2023-44483

    WANG Xiaolin,GUO Jinping,WU Aixiang,et al. Wear mechanism of high-concentration filling pipeline based on aggregate migration[J]. The Chinese Journal of Nonferrous Metals,2024,34(6):2099−2111. doi: 10.11817/j.ysxb.1004.0609.2023-44483
    [10]
    张连富,王洪江,吴爱祥,等. 颗粒粒径对尾砂膏体触变性的影响[J]. 工程科学学报,2023,45(1):1−8.

    ZHANG Lianfu,WANG Hongjiang,WU Aixiang,et al. Study of the effect of particle size on the thixotropy of tailings pastes[J]. Chinese Journal of Engineering,2023,45(1):1−8.
    [11]
    王建栋,吴爱祥,王贻明,等. 粗骨料膏体抗离析性能评价模型与实验研究[J]. 中国矿业大学学报,2016,45(5):866−872.

    WANG Jiandong,WU Aixiang,WANG Yiming,et al. Evaluation model and experimental study for segregation resistance of paste with coarse aggregate[J]. Journal of China University of Mining & Technology,2016,45(5):866−872.
    [12]
    李红,吴爱祥,王洪江,等. 粗粒级膏体充填材料静动态抗离析性能表征[J]. 中南大学学报(自然科学版),2016,47(11):3909−3915.

    LI Hong,WU Aixiang,WANG Hongjiang,et al. Static and dynamic anti-segregation property characterization of coarse-grained paste backfill slurry[J]. Journal of Central South University (Science and Technology),2016,47(11):3909−3915.
    [13]
    杨捷,武继龙,晋俊宇. 矸石、粉煤灰高浓度料浆矸石颗粒悬浮性研究[J]. 矿业科学学报,2019,4(2):127−132.

    YANG Jie,WU Jilong,JIN Junyu. Study on the suspended properties of gangue particles with high concentration of gangue and fly ash[J]. Journal of Mining Science and Technology,2019,4(2):127−132.
    [14]
    YANG B G,JIN J Y,YIN X D,et al. Effect of concentration and suspension agent (HPMC) on properties of coal gangue and fly ash cemented filling material[J]. Shock and Vibration,2021,2021(1):6643773. doi: 10.1155/2021/6643773
    [15]
    刘鹏亮. 固料特性对煤矿充填料浆流动性影响规律研究[D]. 北京:煤炭科学研究总院,2021.

    LIU Pengliang. Study on the influence of solid properties on the fluidity of coal mine filling slurry[D]. Beijing:China Coal Research Institute,2021.
    [16]
    赵兵朝,王海龙,翟迪,等. 黄土-粉煤灰基新型充填材料性能研究[J]. 硅酸盐通报,2022,41(1):199−208. doi: 10.3969/j.issn.1001-1625.2022.1.gsytb202201024

    ZHAO Bingchao,WANG Hailong,ZHAI Di,et al. Performance of a new type of backfilling material based on loess-fly ash[J]. Bulletin of the Chinese Ceramic Society,2022,41(1):199−208. doi: 10.3969/j.issn.1001-1625.2022.1.gsytb202201024
    [17]
    王小勇,王照明,许海龙,等. 水泥-粉煤灰胶结矸石充填材料的流变特性与固结机理[J]. 有色金属工程,2024,14(6):134−143.

    WANG Xiaoyong,WANG Zhaoming,XU Hailong,el al. Rheological Properties and Consolidation Mechanism of Cement-Fly Ash Cemented Gangue Backfill Material[J]. Nonferrous Metals Engineering,2024,14(6):134−143.
    [18]
    吴锦文,邓小伟,焦飞硕,等. 煤基灰/渣的大宗固废资源化利用现状及发展趋势[J]. 煤炭科学技术,2024,52(6):238−252. doi: 10.12438/cst.2023-1102

    WU Jinwen,DENG Xiaowei,JIAO Feishuo,el al. Resource utilization status and development trend of bulk resource utilization of coal-based ash/slag[J]. Coal Science and Technology,2024,52(6):238−252. doi: 10.12438/cst.2023-1102
    [19]
    徐先杰,朱志敬,王孟,等. 固体NaOH/Na2SiO3激发矿粉/粉煤灰-炉渣基注浆材料性能研究[J]. 中南大学学报(自然科学版),2024,55(2):628−637. doi: 10.11817/j.issn.1672-7207.2024.02.016

    XU Xianjie,ZHU Zhijing,WANG Meng,et al. Study on properties of solid NaOH/Na2SiO3 activated slag/fly ashbottom ash based grouting material[J]. Journal of Central South University (Science and Technology),2024,55(2):628−637. doi: 10.11817/j.issn.1672-7207.2024.02.016
    [20]
    王茜,冯红春,周凯. 资源化利用粉煤灰的混凝土强度预测模型[J]. 矿产综合利用,2024(4):195−202. doi: 10.3969/j.issn.1000-6532.2024.04.029

    WANG Qian,FENG Hongchun,ZHOU Kai. Prediction model for strength of fly ash concrete in resourceful utilization[J]. Multipurpose Utilization of Mineral Resources,2024(4):195−202. doi: 10.3969/j.issn.1000-6532.2024.04.029
    [21]
    马成卫,轩大洋,许家林,等. 覆岩隔离注浆充填浆液减水改性试验研究[J]. 采矿与安全工程学报,2023,40(5):1122−1128.

    MA Chengwei,XUAN Dayang,XU Jialin,et al. Experimental study on water reduction and modification of filling slurry by isolated grouting in overlying strata[J]. Journal of Mining & Safety Engineering,2023,40(5):1122−1128.
    [22]
    徐文彬,杨宝贵,杨胜利,等. 矸石充填料浆流变特性与颗粒级配相关性试验研究[J]. 中南大学学报(自然科学版),2016,47(4):1282−1289. doi: 10.11817/j.issn.1672-7207.2016.04.026

    XU Wenbin,YANG Baogui,YANG Shengli,et al. Experimental study on correlativity between rheological parameters and grain grading of coal gauge backfill slurry[J]. Journal of Central South University (Science and Technology),2016,47(4):1282−1289. doi: 10.11817/j.issn.1672-7207.2016.04.026
    [23]
    郑伟钰. 悬浮剂对煤矿高浓度胶结充填料浆输送性能影响研究[D]. 北京:中国矿业大学(北京),2017:31−44.

    ZHENG Weiyu. Study on effect of suspension agent on conveying performance of high concentration cemented filling slurry in coal mine[D]. Beijing:China University of Mining and Technology (Beijing),2017.
    [24]
    杨捷. 煤矿高浓度胶结充填料浆矸石颗粒悬浮性研究[D]. 北京:中国矿业大学(北京),2019.

    YANG Jie. Study on fluidity of high concentration cemented filling slurry of coal gangue[D]. Beijing:China University of Mining and Technology (Beijing),2022.
    [25]
    李涛. 煤矿矸石高浓度胶结充填料浆流动性研究[D]. 北京:中国矿业大学(北京),2022.

    LI Tao. Study on fluidity of high concentration cemented filling slurry of coal gangue[D]. Beijing:China University of Mining and Technology (Beijing),2022.
    [26]
    杨宝贵,杨海刚. 煤矿高浓度胶结充填体能量演化特征试验研究[J]. 矿业科学学报,2022,7(3):304−312.

    YANG Baogui,YANG Haigang. Experimental study on the energy evolution characteristics of high-concentration cemented backfill in coal mine[J]. Journal of Mining Science and Technology,2022,7(3):304−312.
    [27]
    顾成进,杨宝贵,路绍杰,等. 双碳背景下龙王沟煤矿新型绿色矿山建设[J]. 煤炭科学技术,2023,51(S1):440−448.

    GU Chengjin,YANG Baogui,LU Shaojie,el al. The new green mine construction in Longwanggou Coal Mine under the background of carbon peaking and carbon neutrality[J]. Coal Science and Technology,2023,51(S1):440−448.
    [28]
    LI Tao,WANG Xiaolong,LI Ming,et al. Synergy between suspending agent and air entraining agent in cement slurry[J]. Rev Rom Mater,2020,50(2):344−353.
    [29]
    王志荣,石锦民,王新坤,等. 增稠剂对膏体充填料浆流动特性的影响及其工程应用[J]. 有色金属科学与工程,2024,15(1):97−104.

    WANG Zhirong,SHI Jinmin,WANG Xinkun,et al. Effect of thickeners on the flow characteristics of paste filling slurry and its engineering application[J]. Nonferrous Metals Science and Engineering,2024,15(1):97−104.
    [30]
    ZHENG Z J,YANG B G,GU C J,et al. Experimental investigation into the proportion of cemented aeolian sand-coal gangue-fly ash backfill on mechanical and rheological properties[J]. Minerals,2023,13(11):1436. doi: 10.3390/min13111436
  • Related Articles

    [1]CHENG Yuanping, ZHOU Hongxing. Research progress of sensitive index and critical values for coal and gas outburst prediction[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(1): 146-154. DOI: 10.13199/j.cnki.cst.2021.01.009
    [2]LEI Hongyan. Experimental study on rapid determination of critical value of drilling cutting gas desorption index K1[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (8).
    [3]Zhang Yuzhu Lyu Guichun Liu Huihui, . Study on gas content critical value of outburst predicted index in outburst seam region[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (11).
    [4]KONG Sheng-Li CHENG Long-biao WANG Hai-feng ZHOU Hong-xing, . Determination and Application on Critical Value of Drilling Cuttings Gas Desorption Indices[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (8).
    [5]CHEN Liang LIU Ming-ju WU Bing WANG Yin-kai WANG Chao, . Determination on Critical Value of Gas Content Based on Gas Adsorption and Desorption Experiment[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (7).
    [6]ZHANG Zhi-gang. Determination on Pre-Drainage Effect Checking Index of Gas Content Critical Value in Outburst Seam[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (4).
    [7]Analysis on Gas Dynamic Phenomenon Based on Low Critical Value[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (12).
    [8]Study on Prediction on Critical Value of Outburst Sensitive Index for Coal Mining Face in High Stress Soft Seam[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (7).

Catalog

    Article views (71) PDF downloads (33) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return