Citation: | CUI Yazhong,HE Jianrong,REN Yanyan. Research on application of artificial intelligence safety production management and control platform in Shendong mining area[J]. Coal Science and Technology,2025,53(S1):275−283. DOI: 10.12438/cst.2024-0102 |
At present, artificial intelligence technology has achieved certain application results in various fields such as underground comprehensive mining, excavation, electromechanical, transportation, and ventilation in the coal industry. However, there is a lack of system level solutions based on artificial intelligence technology, and most of them remain at the level of single scenarios and business applications. In order to improve the level of coal mine safety production, it is urgent to achieve the integration and data sharing of various systems for excavation, electromechanical, transportation, and ventilation in the coal industry, to meet the data extraction and application needs of artificial intelligence scenarios. By building AI nodes in the cloud, edge, device, a collaborative architecture system based on cloud, edge, device established, and an autonomous and controllable artificial intelligence platform based on industrial ring network, 5G underground in coal mine, industrial control data, big data, private cloud, robots, and intelligent perception agents is constructed. The initial formation includes infrastructure, AI development framework, dataset, AI training, AI deployment The AI service capability and business application of the Shendong mining area's artificial intelligence platform architecture are bottom-up. Supervised learning, semi supervised learning, transfer learning and other technologies are applied to improve the efficiency and quality of model training. Training data and validation datasets are collected from monitoring points deployed at some production sites in Shendong mines as research objects. The relevant trained AI models and algorithms are deployed to the scene of coal mine safety production, further improving the intelligence level of coal mine expert systems, robots, decision management, safety management and equipment monitoring. Taking the example of pedestrian-vehicle non-concurrent movement, industrial camera ambiguity, and main transportation system safety monitoring in Shendong mining area, the application effect of the artificial intelligence safety production control platform is verified.
[1] |
吴俊杰. 2022,人工智能、数字人和图灵原理[J]. 中国信息技术教育,2022(1):13. doi: 10.3969/j.issn.1674-2117.2022.01.010
WU Junjie. 2022,artificial intelligence,digital man and turing principle[J]. China Information Technology Education,2022(1):13. doi: 10.3969/j.issn.1674-2117.2022.01.010
|
[2] |
陈杰. 煤矿人工智能视频分析系统架构体系及关键技术[J]. 煤矿安全,2022,53(6):108−112.
CHEN Jie. Architecture and key technology of coal mine artificial intelligence video analysis system[J]. Safety in Coal Mines,2022,53(6):108−112.
|
[3] |
陶洪铸,翟明玉,许洪强,等. 适应调控领域应用场景的人工智能平台体系架构及关键技术[J]. 电网技术,2020,44(2):412−419.
TAO Hongzhu,ZHAI Mingyu,XU Hongqiang,et al. Architecture and key technologies of artificial intelligence platform oriented for power grid dispatching and control application scenarios[J]. Power System Technology,2020,44(2):412−419.
|
[4] |
黄安子. 电力人工智能开放平台关键技术研究及应用[J]. 自动化与仪器仪表,2020(5):189−192.
HUANG Anzi. Research and application of key technologies of power AI open platform[J]. Automation & Instrumentation,2020(5):189−192.
|
[5] |
王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1−27. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001
WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1−27. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001
|
[6] |
陈晓晶,何敏. 智慧矿山建设架构体系及其关键技术[J]. 煤炭科学技术,2018,46(2):208−212,236.
CHEN Xiaojing,HE Min. Framework system and key technology of intelligent mine construction[J]. Coal Science and Technology,2018,46(2):208−212,236.
|
[7] |
孙晓东. 全矿井人工智能(AI)监管平台关键技术[J]. 煤矿安全,2023,54(12):220−226.
SUN Xiaodong. Key technologies of a full mine artificial intelligence(AI) supervision platform[J]. Safety in Coal Mines,2023,54(12):220−226.
|
[8] |
白艳,郭艳辉. 基于人工智能的图像识别技术分析[J]. 电视技术,2022,46(8):140−143.
BAI Yan,GUO Yanhui. Analysis of image recognition technology based on artificial intelligence[J]. Video Engineering,2022,46(8):140−143.
|
[9] |
李丽亚. 人工智能中图像识别技术的发现与应用研究[J]. 长江信息通信,2022,35(1):134−136. doi: 10.3969/j.issn.1673-1131.2022.01.046
LI Liya. Research on the discovery and application of image recognition technology in artificial intelligence[J]. Changjiang Information & Communications,2022,35(1):134−136. doi: 10.3969/j.issn.1673-1131.2022.01.046
|
[10] |
张倩,王翀,杨泽,等. 煤矿智能安全管控系统研究与应用[J]. 中国煤炭,2023,49(12):78−84.
ZHANG Qian,WANG Chong,YANG Ze,et al. Research and application of intelligent safety management and control system in coal mine[J]. China Coal,2023,49(12):78−84.
|
[11] |
文益民,员喆,余航. 一种新的半监督归纳迁移学习框架:Co-Transfer[J]. 计算机研究与发展,2023,60(7):1603−1614. doi: 10.7544/issn1000-1239.202220232
WEN Yimin,YUN Zhe,YU Hang. A new semi-supervised inductive transfer learning framework:Co-transfer[J]. Journal of Computer Research and Development,2023,60(7):1603−1614. doi: 10.7544/issn1000-1239.202220232
|
[12] |
李小庆. 银行智能中台创新研究和实践[J]. 金融科技时代,2021,29(8):22−26. doi: 10.3969/j.issn.2095-0799.2021.08.005
LI Xiaoqing. Research and practice on innovation of banking intelligent middle platform[J]. FinTech Time,2021,29(8):22−26. doi: 10.3969/j.issn.2095-0799.2021.08.005
|
[13] |
张凌浩,潘文分,庞博,等. 适用于电力场景的人工智能中台技术研究与探索[J]. 四川电力技术,2022,45(3):16−22.
ZHANG Linghao,PAN Wenfen,PANG Bo,et al. Research and exploration of artificial intelligence middle platform technology suitable for power scene[J]. Sichuan Electric Power Technology,2022,45(3):16−22.
|
[14] |
黄巨涛,郑杰生,高尚,等. 基于云平台的人工智能开源开发平台框架研究[J]. 自动化与仪器仪表,2020(7):159−162,166.
HUANG Jutao,ZHENG Jiesheng,GAO Shang,et al. Research on the framework of AI open source development platform based on cloud platform[J]. Automation & Instrumentation,2020(7):159−162,166.
|
[15] |
张港. 基于深度学习轻量化卷积神经网络的遥感图像场景分类研究[D]. 南京:南京邮电大学,2022.
ZHANG Gang. Research on remote sensing image scene classification based on deep learning lightweight convolutional neural network[D]. Nanjing:Nanjing University of Posts and Telecommunications,2022.
|
[16] |
陈群贤. TensorFlow下基于CNN卷积神经网络的手写数字识别研究[J]. 信息记录材料,2022,23(9):159−161.
CHEN Qunxian. Research on handwritten numeral recognition based on CNN convolutional neural network under TensorFlow[J]. Information Recording Materials,2022,23(9):159−161.
|
[17] |
王甜. PyTorch至ONNX的神经网络格式转换的研究[D]. 西安:西安电子科技大学,2022.
WANG Tian. Research on neural network format conversion from PyTorch to ONNX[D]. Xi’an:Xidian University,2022.
|
[18] |
高志远,彭林,李炳林,等. 新兴ICT技术对电力系统自动化的协同支撑作用研究[J]. 电力系统保护与控制,2021,49(7):160−166.
GAO Zhiyuan,PENG Lin,LI Binglin,et al. Research on the collaborative support of emerging new ICTs for power system automation[J]. Power System Protection and Control,2021,49(7):160−166.
|
[19] |
孔怡青. 半监督学习及其应用研究[D]. 无锡:江南大学,2009.
KONG Yiqing. Research on semi-supervised learning and its application[D]. Wuxi:Jiangnan University,2009.
|
[20] |
吕进东,王彤,唐晓斌. 基于图注意力网络的半监督SAR舰船目标检测[J]. 电子与信息学报,2023,45(5):1541−1549.
LÜ Jindong,WANG Tong,TANG Xiaobin. Semi-supervised SAR ship target detection with graph attention network[J]. Journal of Electronics & Information Technology,2023,45(5):1541−1549.
|
[21] |
卞嘉楠,冒泽慧,姜斌,等. 基于知识图谱和多任务学习的工业生产关键设备故障诊断方法[J]. 中国科学:信息科学,2023,53(4):699−714. doi: 10.1360/SSI-2022-0060
BIAN Jianan,MAO Zehui,JIANG Bin,et al. Fault diagnosis method of critical industrial equipment based on knowledge graphs and multi-task learning[J]. Scientia Sinica (Informationis),2023,53(4):699−714. doi: 10.1360/SSI-2022-0060
|
[22] |
SETTLES B. Active learning literature survey[R]. Madison:University of Wisconsin-Madison,2010.
|
[23] |
吴双. AI大模型:高效利用算力打造智能通用底座[N]. 人民邮电报,2022−06−23 (006).
WU Shuang. AI large models:Efficient utilization of computing power to build a general-purpose intelligent infrastructure[N]. People’s Posts and Telecommunications News,2022−06−23 (006).
|
[24] |
赵青. 煤矿基于AI智能视频的带式输送机监测保护系统[J]. 煤矿机械,2022,43(10):196−198.
ZHAO Qing. Monitoring and protection system of belt conveyor based on AI intelligent video in coal mine[J]. Coal Mine Machinery,2022,43(10):196−198.
|
[25] |
胡轶斐. 基于视频AI、数字孪生技术的煤矿智能煤流监控系统设计与研究[J]. 内蒙古煤炭经济,2020(16):48−49. doi: 10.3969/j.issn.1008-0155.2020.16.023
HU Yifei. Design and research of intelligent coal flow monitoring system in coal mine based on video AI and digital twin technology[J]. Inner Mongolia Coal Economy,2020(16):48−49. doi: 10.3969/j.issn.1008-0155.2020.16.023
|
[1] | PANG Yihui, BI Jinglong, YUAN Pengzhe, ZHAO Baofu, DING Ziwei. Coal mining equipment lifecycle management system architecture and key technology[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(2): 339-350. DOI: 10.12438/cst.2024-1609 |
[2] | ZHANG Qiang, YANG Kang, CAO Jinming, BAI Yu, DENG Panbo, YANG Zi. Solid intelligent backfill coal mining method with video ai algorithm analysis in coal mine[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(11): 163-173. DOI: 10.12438/cst.2024-0955 |
[3] | CHENG Deqiang, QIAN Jiansheng, GUO Xingge, KOU Qiqi, XU Feixiang, GU Jun, GAO Yachao, ZHAO Jinsheng. Review on key technologies of AI recognition for videos in coal mine[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(2): 349-365. DOI: 10.13199/j.cnki.cst.2022-0359 |
[4] | WEN Liang, WU Wenzhen, LI Qiwei. Study on intelligent coal mine construction scheme of F5G architecture[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(11): 176-182. |
[5] | ZHANG Xiaoxia, LI Shoubin, SU Shanghai, LI Hao. Design and implementation of mine big data platform based on industrial internet architecture[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(6): 277-285. |
[6] | HU Qingsong, ZHANG Henan, LI Shiyin, SUN Yanjing. Intelligent coal mine target location service technology based on big data and AI driven[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(8): 121-130. |
[7] | WU Qunying, JIANG Lin, WANG Guofa, YE Ou, JIANG Zejun, DONG Lihong, GUO Jianjun, FU Limei, SHI Xiaonan, XI Xiao, XUE Zhongxin. Top-level architecture design and key technologies of smart mine[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(7). |
[8] | YAN Junhao, JIA Zongpu, LI Dongyin. Architecture and key technologies of Intelligent of Vehicles in intelligent mine[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(7). |
[9] | LU Zhengxiong, GUO Wei, ZHANG Fan, ZHANG Chuanwei, ZHAO Shuanfeng, YANG Manzhi, WANG Yuan. Collaborative control system architecture and key technologies of fully-mechanized mining equipment based on data drive[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(7). |
[10] | WANG Zhongxin, SUN Xin, WANG Jinjin, QI Zhenpeng, SONG Bo. Collaborative work platform architecture and key technologies of intelligent open pit mine based on BIM[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (10). |
1. |
王毅,马壮,王宏涛,白宇,王柯,陈伟. 巨厚含水层下厚煤层综放开采覆岩破坏规律与涌(突)水危险性研究. 煤炭技术. 2025(04): 130-137 .
![]() |