Citation: | XU Jiaxiang,ZHAO Yang,WANG Meizhu,et al. Effects of fracture network connectivity in coal seams on proppant transport[J]. Coal Science and Technology,2025,53(4):312−323. DOI: 10.12438/cst.2024-0075 |
The horizontal well staged multi-cluster fracturing used in the development of coalbed methane could jointly form a complex fracture network with cleats in the coal seam. Due to the different density and aperture of cleats, there are differences in the connectivity between various clusters of fracture networks, which directly affects the proppants transport within the fracture network. In order to explore the influence of the connectivity of various clusters of fracture networks in coal seams on the placement of proppants, two types of fracture networks, connected and unconnected, were established. The fracture network consists of two clusters of hydraulic fractures connected in series by a horizontal well section and combined with orthogonal cleats. The connectivity between the two clusters of fracture networks depends on the connectivity of secondary fractures. Considering the proppants sphericity, the Mixture model in the multiphase flow model of Eulerian Eulerian is used to simulate the distribution characteristics of proppants in different levels of fractures in connected and unconnected fracture networks under different slurry viscosity, slurry displacements, and proppant particle sizes. The sand filling ratio of proppants in these two types of fracture networks is compared to clarify the influence of network connectivity on the proppants distribution in fractures. The simulation results indicate that due to the interference between the sand carrying fluids entering from two clusters of fractures in the connecting part of the fracture network, there is almost no proppant in this connecting part. However, compared to unconnected fracture networks, the proppant is transported further within the main fracture of the connected fracture network. In terms of the total sand filling ratio of the fracture network, the sand filling ratio of the unconnected fracture network is much higher than that of the connected fracture network, with an average increase of 53.3% under the simulation parameter conditions of this study. In both connected and unconnected fracture networks, areas with sand concentration less than 5% in each level of fracture account for a large proportion, followed by areas with sand concentration greater than 10%, and areas with sand concentration between 5% and 10% have the smallest proportion. Further, reducing the slurry viscosity, increasing the slurry displacement, and using smaller particle size proppants can effectively improve the proppants distribution in both types of fracture networks. Especially, the slurry displacement in the interconnected fracture network should not be less than 12 m3/min, and the particle size of the proppant should not larger than 100 mesh.
[1] |
孙东玲,梁运培,黄旭超,等. 新疆大倾角多煤组煤矿区煤层气开发利用进展与前景[J]. 煤炭科学技术,2023,51(S1):162−172.
SUN Dongling,LIANG Yunpei,HUANG Xuchao,et al. Progress and prospects of coalbedmethane developmentand utilization in coal mining areas with large dip angle and multiplecoal groups in Xinjiang[J]. Coal Science andTechnology,2023,51(S1):162−172.
|
[2] |
徐凤银,肖芝华,陈东,等. 我国煤层气开发技术现状与发展方向[J]. 煤炭科学技术,2019,47(10):205−215.
XU Fengyin,XIAO Zhihua,CHEN Dong,et al. Current status and development direction of coalbed methane exploration technology in China[J]. Coal Science and Technology,2019,47(10):205−215.
|
[3] |
姚红生,杨松,刘晓,等. 低效煤层气井多次压裂增效开发技术研究[J]. 煤炭科学技术,2022,50(9):121−129.
YAO Hongsheng,YANG Song,LIU Xiao,et al. Research on efficiency-enhancing development technology of multiple fracturing in low-efficiency CBM wells[J]. Coal Science and Technology,2022,50(9):121−129.
|
[4] |
申鹏磊,吕帅锋,李贵山,等. 深部煤层气水平井水力压裂技术:以沁水盆地长治北地区为例[J]. 煤炭学报,2021,46(8):2488−2500.
SHEN Penglei,LYU Shuaifeng,LI Guishan,et al. Hydraulic fracturing technology for deep coalbed methane horizontal wells:A case study in North Changzhi area of Qinshui Basin[J]. Journal of China Coal Society,2021,46(8):2488−2500.
|
[5] |
丛日超,王海柱,李根生,等. 超临界CO2聚能压裂开发煤层气可行性研究[J]. 煤炭学报,2023,48(8):3162−3171.
CONG Richao,WANG Haizhu,LI Gensheng,et al. Feasibility on exploitation of coalbed methane by SC-CO2 shock fracturing[J]. Journal of China Coal Society,2023,48(8):3162−3171.
|
[6] |
陈捷,胡海洋,刘立,等. 薄煤层水力裂缝宽度变化对支撑剂运移的影响[J]. 断块油气田,2023,30(5):728−733,750.
CHEN Jie,HU Haiyang,LIU Li,et al. The influence of hydraulic fracture width change on proppant transport in thin coal seam[J]. Fault-Block Oil & Gas Field,2023,30(5):728−733,750.
|
[7] |
苏现波,范渐,王然,等. 煤储层水力压裂裂缝内支撑剂运移控制因素实验研究[J]. 煤田地质与勘探,2023,51(6):62−73.
SU Xianbo,FAN Jian,WANG Ran,et al. An experimental study on factors controlling the proppant transport in hydraulic fractures of coal reservoirs[J]. Coal Geology & Exploration,2023,51(6):62−73.
|
[8] |
王生维,熊章凯,吕帅锋,等. 煤储层水力压裂裂缝中支撑剂特征及研究意义[J]. 煤田地质与勘探,2022,50(3):137−145. doi: 10.12363/issn.1001-1986.21.12.0813
WANG Shengwei,XIONG Zhangkai,LYU Shuaifeng,et al. Characteristics and significance of proppant in hydraulic fractures in coal reservoirs[J]. Coal Geology & Exploration,2022,50(3):137−145. doi: 10.12363/issn.1001-1986.21.12.0813
|
[9] |
张苗,邹明俊,吕乐乐,等. 水力压裂过程中陶粒支撑剂运移规律及粒级配比优化[J]. 煤矿安全,2022,53(2):16−19,26.
ZHANG Miao,ZOU Mingjun,LYU Lele,et al. Migration law of ceramsite proppant and its granularity matching during coalbed methane fracturing[J]. Safety in Coal Mines,2022,53(2):16−19,26.
|
[10] |
LI H Z,HUANG B X,ZHAO X L,et al. Experimental investigation on proppant transport and distribution characteristics in coal hydraulic fractures under true triaxial stresses[J]. Journal of Petroleum Science and Engineering,2022,218:110993. doi: 10.1016/j.petrol.2022.110993
|
[11] |
LAMEI RAMANDI H,PIRZADA M A,SAYDAM S,et al. Digital and experimental rock analysis of proppant injection into naturally fractured coal[J]. Fuel,2021,286:119368. doi: 10.1016/j.fuel.2020.119368
|
[12] |
郭天魁,宫远志,刘晓强,等. 复杂裂缝中支撑剂运移铺置规律数值模拟[J]. 中国石油大学学报(自然科学版),2022,46(3):89−95.
GUO Tiankui,GONG Yuanzhi,LIU Xiaoqiang,et al. Numerical simulation of proppant migration and distribution in complex fractures[J]. Journal of China University of Petroleum (Edition of Natural Science),2022,46(3):89−95.
|
[13] |
张艳博,徐加祥,刘哲,等. 二级裂缝倾角对复杂缝网中支撑剂输送的影响[J]. 大庆石油地质与开发,2023,42(1):91-99.
ZHANG Yanbo,XU Jiaxiang ,LIU Zhe,et al. Effect of secondary fracture dip on proppant transport in complex fracture network[J]. Petroleum Geology & Oilfield Development in Daqing,2023,42(1):91-99.
|
[14] |
XU J X,GAO R,YANG L F,et al. A 3D tortuous fracture network construction approach to analyze proppant distribution in post-fractured shale[J]. Journal of Petroleum Science and Engineering,2022,208:109676. doi: 10.1016/j.petrol.2021.109676
|
[15] |
MAO S W,ZHANG Z,CHUN T S,et al. Field-scale numerical investigation of proppant transport among multicluster hydraulic fractures[J]. SPE Journal,2021,26(1):307−323.
|
[16] |
杨鹏,张士诚,邹雨时,等. 井平台多井压裂裂缝扩展、支撑剂运移规律与参数优化[J]. 石油勘探与开发,2023,50(5):1065−1073.
YANG Peng,ZHANG Shicheng,ZOU Yushi,et al. Fracture propagation,proppant transport and parameter optimization of multi-well pad fracturing treatment[J]. Petroleum Exploration and Development,2023,50(5):1065−1073.
|
[17] |
安琦,杨帆,杨睿月,等. 鄂尔多斯盆地神府区块深部煤层气体积压裂实践与认识[J]. 煤炭学报,2024,49(5):2376−2393.
AN Qi,YANG Fan,YANG Ruiyue,et al. Practice and understanding of deep coalbed methane massive hydraulic fracturing in shenfu block,ordos basin[J]. Journal of China Coal Society,2024,49(5):2376−2393.
|
[18] |
贺艳祥,徐强,张争光,等. 沁水盆地西南缘煤层气水力压裂裂缝分布特征及主控因素研究[J]. 煤炭工程,2023,55(S1):141−147.
HE Yanxiang,XU Xiang,ZHANG Zhengguang,et al. Distribution characteristics and main controlling factors of hydraulic fracturing fractures of coalbed methane in the southwestern margin of Qinshui Basin[J]. Coal Engineering,2023,55(S1):141−147.
|
[19] |
李倩,李童,蔡益栋,等. 煤层气储层水力裂缝扩展特征与控因研究进展[J]. 煤炭学报,2023,48(12):4443−4460.
LI Qian,LI Tong,CAI Yidong,et al. Research progress on hydraulic fracture characteristics and controlling factors of coalbed methane reservoirs[J]. Journal of China Coal Society,2023,48(12):4443−4460.
|
[20] |
周大庆,陈雅楠,陈会向,等. 基于VOF模型的深隧系统入流竖井两相流模拟[J]. 中国给水排水,2023,39(19):132−138.
ZHOU Daqing,CHEN Yanan,CHEN Huixiang,et al. Simulation of two-phase flow in inflow shaft of deep tunnel drainage system based on VOF model[J]. CHINA WATER & WASTEWATER,2023,39(19):132−138.
|
[21] |
钟安海,郭天魁. 水平井多簇支撑剂分布数值模拟[J]. 深圳大学学报(理工版),2022,39(5):576−583. doi: 10.3724/SP.J.1249.2022.05576
ZHONG Anhai,GUO Tiankui. Numerical simulation of multi-cluster proppant distribution in horizontal wells[J]. Journal of Shenzhen University (Science and Engineering),2022,39(5):576−583. doi: 10.3724/SP.J.1249.2022.05576
|
[22] |
左伟芹,谢坤容,韩红凯,等. 清洁压裂液携带作用下支撑剂运移铺置规律研究[J]. 煤矿安全,2022,53(12):42−47.
ZUO Weiqin,XIE Kunrong,HAN Hongkai,et al. Study on proppant migration and placement under sand-carrying action of clean fracturing fluid[J]. Safety in Coal Mines,2022,53(12):42−47.
|
[23] |
王猛,王海柱,李根生,等. 超临界CO2压裂缝内携砂数值模拟[J]. 石油机械,2018,46(11):72−78,84.
WANG Meng,WANG Haizhu,LI Gensheng,et al. Numerical study of proppant transport with supercritical CO2 in fracture[J]. China Petroleum Machinery,2018,46(11):72−78,84.
|
[24] |
张涛,郭建春,刘伟. 清水压裂中支撑剂输送沉降行为的CFD模拟[J]. 西南石油大学学报(自然科学版),2014,36(1):74−82.
ZHANG Tao,GUO Jianchun,LIU Wei. CFD simulation of proppant transportation and settling in water fracture treatments[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2014,36(1):74−82.
|
[25] |
刘春亭,李明忠,郝丽华,等. 水力裂缝内支撑剂输送沉降行为数值仿真[J]. 大庆石油地质与开发,2018,37(5):86−93.
LIU Chunting,LI Mingzhong,HAO Lihua,et al. Numerical simulation of the proppant transportation and setting in the hydraulic fracture[J]. Petroleum Geology & Oilfield Development in Daqing,2018,37(5):86−93.
|
[26] |
任岚,林辰,林然,等. 复杂裂缝中低密度支撑剂铺置数值模拟[J]. 大庆石油地质与开发,2021,40(6):52−61.
REN Lan,LIN Chen,LIN Ran,et al. Numerical simulation of the low-density proppant placement in complex fractures[J]. Petroleum Geology & Oilfield Development in Daqing,2021,40(6):52−61.
|
[27] |
林啸,杨兆中,胡月,等. 页岩体积压裂支撑剂铺置运移模拟及其应用[J]. 大庆石油地质与开发,2021,40(6):151−157.
LIN Xiao,YANG Zhaozhong,HU Yue,et al. Simulation of proppant placement and migration in shale volume fracturing and its application[J]. Petroleum Geology & Oilfield Development in Daqing,2021,40(6):151−157.
|
[28] |
徐加祥,丁云宏,杨立峰,等. 压裂支撑剂在迂曲微裂缝中输送与分布规律[J]. 石油学报,2019,40(8):965−974. doi: 10.7623/syxb201908007
XU Jiaxiang,DING Yunhong,YANG Lifeng,et al. Transportation and distribution laws of proppants in tortuous micro-fractures[J]. Acta Petrolei Sinica,2019,40(8):965−974. doi: 10.7623/syxb201908007
|
[29] |
YUE M,ZHANG Q T,ZHU W Y,et al. Effects of proppant distribution in fracture networks on horizontal well performance[J]. Journal of Petroleum Science and Engineering,2020,187:106816. doi: 10.1016/j.petrol.2019.106816
|
[30] |
RIVAS E,GRACIE R. Numerical considerations for the simulation of proppant transport through fractures[J]. Journal of Petroleum Science and Engineering,2019,180:1006−1021. doi: 10.1016/j.petrol.2019.05.064
|
[31] |
张涛, 蹇胤霖, 何乐, 等. 压裂复杂裂缝中支撑剂输送数值模拟研究[J]. 油气地质与采收率,2024,31(3):123−136.
ZHANG Tao, JIAN Yinlin, HE Le, et al. Numerical simulation study of proppant transport in complex hydraulic fractures[J]. Petroleum Geology and Recovery Efficiency,2024,31(3):123−136.
|
[1] | LIU Chengyong, GU Wenzhe, CUI Feng, ZHANG Yun, YANG Yanbin, QIU Fengqi, YUAN Chaofeng, CHENG Haixing, LI Ming. Research progress and prospects on resource utilization of coal gangue for soil remediation in China[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(6): 125-140. DOI: 10.12438/cst.2025-0335 |
[2] | GU Xiaowei, GE Xiaowei, LIU Shaoqian, DING Xuecheng, WANG Li, HUANG Dongwei, WANG Dawei, MA Yile. Research progress on physical and chemical properties of coal gasification slag and its preparation of building materials[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(6): 29-45. DOI: 10.12438/cst.2025-0665 |
[3] | FAN Yongyong, YANG Wenfu, QI Fuhui, ZHANG Xingxing, SONG Wenlong, SU Yufei, XIE Hua. Diversified and efficient utilization and evaluation of remaining coal resources of closed coal mines in Shanxi Province[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(4): 114-124. DOI: 10.12438/cst.2024-1352 |
[4] | WU Jinwen, DENG Xiaowei, JIAO Feishuo, LYU Bo, FANG Chaojun. Resource utilization status and development trend of bulk solid waste of coal-based ash/slag[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(6): 238-252. DOI: 10.12438/cst.2023-1102 |
[5] | ZHU Tao, WU Xinjuan, XING Cheng, JU Qiuge, SU Siyuan. Current situation and progress of coal gangue resource utilization[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(1): 380-390. DOI: 10.12438/cst.2023-1917 |
[6] | HE Xuwen, WANG Shaozhou, ZHANG Xuewei, LI Fuqin. Coal mine drainage resources utilization technology innovation[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(1): 523-530. DOI: 10.13199/j.cnki.cst.2022-1641 |
[7] | QIN Shenjun, XU Fei, CUI Li, WANG Jinxi, LI Shenyong, ZHAO Zesen, XIAO Lin, GUO Yanxia, ZHAO Cunliang. Geochemistry characteristics and resource utilization of strategically critical trace elements from coal-related resources[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(3): 1-38. |
[8] | YAN Lihuang, WANG Wenfeng, BIAN Zhengfu. Prospectsof resource utilization and disposal of coal-based solid wastes in Xinjiang[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(1): 319-330. DOI: 10.13199/j.cnki.cst.2021.01.030 |
[9] | HE Xuwen, ZHANG Xiaohang, LI Fuqin, ZHANG Chunhui. Comprehensive utilization system and technical innovation of coal mine water resources[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (9). |
[10] | Analysis and Utilization Direction on Associated Resources of Lignite in China[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (12). |
1. |
高春雷, 侯竣升, 丁子涵, 黄磊, 张浩, 田佰起, 吴俊杰, 郝南京. 基于煤气化渣的Fe_2O_3纳米流体制备与电池热管理试验. 煤炭科学技术. 2025(06)
![]() | |
2. |
顾晓薇, 葛晓伟, 刘少迁, 丁学成, 王莉, 黄冬蔚, 王达伟, 马以勒. 煤气化渣理化特性及其制备建筑材料研究进展. 煤炭科学技术. 2025(06)
![]() | |
3. |
张钦礼, 陶云波, 冯岩, 陈秋松, 高凌志, 张芋杰, 王道林. 采-选-冶-化固废基充填材料制备及综合性能研究综述. 煤炭科学技术. 2025(06)
![]() | |
4. |
张翠敏, 王之敏, 王浩然, 李红真, 李万磊, 黄京立, 张秀芝. 全固废碱激发胶凝材料混凝土砖的制备及性能研究. 混凝土与水泥制品. 2025(06)
![]() | |
5. |
孙浩, 蒋林亮, 常新卓, 田全志. 煤气化渣免烧陶粒滤料强度和孔结构的调控. 煤炭科学技术. 2025(06)
![]() | |
6. |
丁天昱,王龙江,鱼涛,陈刚. 煤气化渣的改性及其在水泥增强中的应用研究. 化工技术与开发. 2025(Z1): 66-69 .
![]() | |
7. |
李飞,王福宁,金涛,朱建华,刘向辉. 大宗煤基固废利用研究现状与展望. 山东化工. 2025(01): 75-78 .
![]() | |
8. |
阿拉腾沙嘎,段乐乐. 煤气化渣资源化利用的研究进展. 化工技术与开发. 2025(03): 44-47 .
![]() | |
9. |
廖昌建,王晶,金平,刘志禹,徐婉怡,王坤. 煤气化渣理化特性及其所含重金属迁移规律综述. 煤炭科学技术. 2025(02): 426-443 .
![]() | |
10. |
孙振杰,唐彪,董开明,吴松涛,尤晓东,黄潇洋,刘元,张浩,田佰起,郭飞强. 煤气化细渣活化耦合酸浸过程结构演化特性. 中国矿业大学学报. 2025(03): 524-533 .
![]() | |
11. |
张吉雄,顾晓薇,周楠,于广锁,郝南京,肖耀猛. 煤气化灰渣规模化分质梯级利用与高效处置技术研究. 中国矿业大学学报. 2025(03): 471-484 .
![]() | |
12. |
周柏屹,王浩南,夏良志. 气化渣破碎与预干燥过程数值仿真及实验研究. 现代化工. 2024(S2): 359-365 .
![]() | |
13. |
杨帆. 煤气化过程中副产物气化渣的综合利用技术研究. 化工管理. 2024(31): 90-93 .
![]() | |
14. |
周季龙,王亚茹,魏怡菲,孙建平,孙伟,岳彤. 气化渣酸浸液去除铁铬及聚合氯化铝制备. 中国有色金属学报. 2024(12): 4111-4125 .
![]() | |
15. |
程臻赟,王占银,傅博,雷华,苏梦,丁楠,陈美庆. 煤气化渣黏土复合地基填料力学特性研究. 江西建材. 2024(10): 217-220 .
![]() | |
16. |
傅博,程臻赟,雷华. 助磨剂对气化渣球磨特性的影响. 化学反应工程与工艺. 2024(06): 516-520+539 .
![]() |