Citation: | ZHOU Gang,ZHANG Xinyuan,LI Shuailong,et al. Study on the characteristics of Cd2+ adsorption of mineral processing wastewater by micro-organisms supported by hydrothermal carbon[J]. Coal Science and Technology,2025,53(4):414−433. DOI: 10.12438/cst.2024-0042 |
With the development of science and technology and the improvement of human living standards, gold has been widely used in various industries, but with the mining of gold mines, a large number of mineral processing wastewater rich in heavy metal ions has caused damage to the environment. Especially the heavy metal cadmium (Cd), because of its strong biological toxicity and high enrichment seriously harm human health and ecological safety. Therefore, in order to effectively control cadmium pollution in gold mine wastewater, based on immobilized microbial technology, this study used the concentration gradient method of heavy metals to screen the in situ dominant bacteria with strong tolerance to Cd2+ from the sludge of gold mine wastewater pool, and used hydrothermal carbon as the immobilized carrier. The immobilized microbial activated carbon spheres (HC-PVA-SA-MOI) were prepared by a composite fixation method combining adsorption-embedding and cross-linking. The microscopic morphology, elemental composition, surface functional groups, specific surface area and porosity of HC-PVA-SA-MOI were analyzed by SEM, XPS and BET characterization experiments. The results showed that HC-PVA-SA-MOI was spherical in uniform size, mainly composed of C, O, N, Na and other elements. The specific surface area was
[1] |
王蓓. 走具有中国特色的黄金市场高质量发展之路-党的十八大以来我国黄金市场开放发展综述[J]. 中国黄金珠宝,2022(10):18−23.
WANG Bei. Take the path of high-quality development of the gold market with Chinese characteristics[J]. China Gold News,2022(10):18−23.
|
[2] |
李平. 金矿选矿废水处理技术分析与评价[J]. 资源节约与环保,2014(7):130−131.
LI Ping. Analysis and evaluation of treatment technology of gold ore dressing wastewater[J]. Resources Economization & Environmental Protection,2014(7):130−131.
|
[3] |
AHMAD A,BHAT A H,BUANG A. Biosorption of transition metals by freely suspended and Ca-alginate immobilised with Chlorella vulgaris:Kinetic and equilibrium modeling[J]. Journal of Cleaner Production,2018,171:1361−1375.
|
[4] |
AN Q,RAN B B,DENG S M,et al. Peanut shell biochar immobilized Pseudomonas hibiscicola strain L1 to remove electroplating mixed-wastewater[J]. Journal of Environmental Chemical Engineering,2023,11(2):109411. doi: 10.1016/j.jece.2023.109411
|
[5] |
窦红宾,郭唯. 重金属污染及其对水土的危害[J]. 生态经济,2022,38(11):5−8.
DOU Hongbin,GUO Wei. Heavy metal pollution and its harm to soil and water[J]. Ecological Economy,2022,38(11):5−8.
|
[6] |
孙福金. 重金属“镉” 对动植物、人体的危害及应对措施[J]. 现代农业,2012(5):162−163.
SUN Fujin. Harm of heavy metal “cadmium” to animals, plants and human body and its countermeasures[J]. Modern Agriculture,2012(5):162−163.
|
[7] |
ZHOU G,JIA X C,XU Y X,et al. A bowl-shaped structure-controllable hydrothermal carbon experiment design combined with DFT simulation:Efficient adsorption of Cd and Pb in coal gangue accumulation areas[J]. Applied Surface Science,2024,642:158567. doi: 10.1016/j.apsusc.2023.158567
|
[8] |
国家环境保护总局. 污水综合排放标准:GB 8978—1996[S]. 北京:中国标准出版社,1998.
|
[9] |
FENG W R,XIAO X,LI J J,et al. Bioleaching and immobilizing of copper and zinc using endophytes coupled with biochar-hydroxyapatite:Bipolar remediation for heavy metals contaminated mining soils[J]. Chemosphere,2023,315:137730. doi: 10.1016/j.chemosphere.2022.137730
|
[10] |
陈瑜. 我国金矿废水处理综述[J]. 矿业工程,2020,18(5):58−60.
CHEN Yu. Overview of gold ore waste water treatment in China[J]. Mining Engineering,2020,18(5):58−60.
|
[11] |
ZONG S M,YUN H,YU X,et al. Bioaugmentation of Cd(II) removal in high-salinity wastewater by engineered Escherichia coli harbouring EC20 and irrE genes[J]. Journal of Cleaner Production,2023,414:137656. doi: 10.1016/j.jclepro.2023.137656
|
[12] |
ZENG T T,ZHANG X L,NONG H D,et al. Efficiency,mechanism and microbial community of Cd(Ⅱ) removal by mixed bacteria enriched from heavy metals mine soil[J]. Transactions of Nonferrous Metals Society of China,2022,32(10):3404−3419.
|
[13] |
LIN H,QIN K J,DONG Y B,et al. A newly-constructed bifunctional bacterial consortium for removing butyl xanthate and cadmium simultaneously from mineral processing wastewater:Experimental evaluation,degradation and biomineralization[J]. Journal of Environmental Management,2022,316:115304.
|
[14] |
黄真真,陈桂秋,曾光明,等. 固定化微生物技术及其处理废水机制的研究进展[J]. 环境污染与防治,2015,37(10):77−85.
HUANG Zhenzhen,CHEN Guiqiu,ZENG Guangming,et al. Research progress of immobilized microorganism technology and its mechanisms in wastewater treatment[J]. Environmental Pollution & Control,2015,37(10):77−85.
|
[15] |
韩嘉碧,吴慧芳,庄子孟,等. 固定化微生物技术用于废水处理的研究进展[J]. 江西化工,2020,36(4):50−51.
HAN Jiabi,WU Huifang,ZHUANG Zimeng,et al. Research progress of immobilized microorganism technology for wastewater treatment[J]. Jiangxi Chemical Industry,2020,36(4):50−51.
|
[16] |
曹克胜. 微生物固定化技术在含重金属废水处理中的应用研究[J]. 世界有色金属,2022(5):214−216. doi: 10.3969/j.issn.1002-5065.2022.05.072
CAO Kesheng. Application of microbial immobilization technology in the treatment of wastewater containing heavy metals[J]. World Nonferrous Metals,2022(5):214−216. doi: 10.3969/j.issn.1002-5065.2022.05.072
|
[17] |
叶锦韶,尹华,彭辉,等. 柱生物曝气法吸附处理含铬废水[J]. 环境污染治理技术与设备,2006,7(1):4.
YE Jinzhao,YIN Hua,PENG Hui,et al. Treatment of wastewater containing chromium by column biological aeration[J]. Chinese Journal of Environmental Engineering,2006,7(1):4.
|
[18] |
BAYTAK S,ZEREEN F,ARSLAN Z. Preconcentration of trace elements from water samples on a minicolumn of yeast (Yamadazyma spartinae) immobilized TiO2 nanoparticles for determination by ICP-AES[J]. Talanta,2011,84(2):319−323. doi: 10.1016/j.talanta.2011.01.020
|
[19] |
李海玲,陈丽华,肖朝虎,等. 微生物固定化载体材料的研究进展[J]. 现代化工,2020,40(8):58−61,66.
LI Hailing,CHEN Lihua,XIAO Chaohu,et al. Research progress in microorganisms immobilized carrier materials[J]. Modern Chemical Industry,2020,40(8):58−61,66.
|
[20] |
张太平,肖嘉慧,胡凤洁. 生物碳固定化微生物技术在去除水中污染物的应用研究进展[J]. 生态环境学报,2021,30(5):1084−1093.
ZHANG Taiping,XIAO Jiahui,HU Fengjie. Research progress on the application of bio-carbon immobilized microorganism technology in removing pollutants from water[J]. Ecology and Environmental Sciences,2021,30(5):1084−1093.
|
[21] |
KE T,GUO G Y,LIU J R,et al. Improvement of the Cu and Cd phytostabilization efficiency of perennial ryegrass through the inoculation of three metal-resistant PGPR strains[J]. Environmental Pollution,2021,271:116314. doi: 10.1016/j.envpol.2020.116314
|
[22] |
闫刚. 关于金矿选矿废水处理技术的分析探讨[J]. 冶金管理,2019,377(15):131−132.
YAN Gang. Analysis and discussion on the treatment technology of gold ore beneficiation wastewater[J]. Metallurgical Management,2019,377(15):131−132.
|
[23] |
YANG P,TANG K W,ZHANG L H,et al. Effects of landscape modification on coastal sediment nitrogen availability,microbial functional gene abundances and N2O production potential across the tropical-subtropical gradient[J]. Environmental Research,2023,227:115829. doi: 10.1016/j.envres.2023.115829
|
[24] |
文志杰,姜鹏飞,宋振骐,等. 废弃矿井抽水蓄能面临的关键问题与对策思考[J]. 山东科技大学学报(自然科学版),2023,42(1):28−37.
WEN Zhijie,JIANG Pengfei,SONG Zhenqi,et al. Key problems and countermeasures of abandoned mine pumped storage[J]. Journal of Shandong University of Science and Technology (Natural Science),2023,42(1):28−37.
|
[25] |
彭海渊. 固定化微生物活性小球处理含Cd(Ⅱ)和Zn(Ⅱ)废水的性能与机理研究[D]. 长沙:长沙理工大学,2020.
PENG Haiyuan. Study on the performance and mechanism of the treatment of wastewater containing Cd(Ⅱ) and Zn(Ⅱ) by immobilized microbe active pellets[D]. Changsha:Changsha University of Science & Technology,2020.
|
[26] |
SABERIAN M K,KARGARI A,SOLEIMANI M,et al. Kinetics and equilibrium study of adsorptive removal of cadmium ions from aqueous solutions by utilizing lime peel as a biosorbent[J]. Desalination and Water Treatment,2023,297:88−101.
|
[27] |
LIANG D H,HU Y Y. Application of a heavy metal-resistant Achromobacter sp. for the simultaneous immobilization of cadmium and degradation of sulfamethoxazole from wastewater[J]. Journal of Hazardous Materials,2021,402:124032. doi: 10.1016/j.jhazmat.2020.124032
|
[28] |
ZHOU G,MENG Q Z,LI S L,et al. Novel magnetic metal-organic framework derivative:An adsorbent for efficient removal of fluorine-containing wastewater in mines[J]. Journal of Environmental Chemical Engineering,2022,10(5):108421. doi: 10.1016/j.jece.2022.108421
|
[29] |
刘博伟,张长平,李秀仙,等. ZnFe-LDHs改性粉煤灰对模拟废水中镉离子的吸附性能[J]. 环境工程学报,2022,16(5):1429−1439. doi: 10.12030/j.cjee.202112143
LIU Bowei,ZHANG Changping,LI Xiuxian,et al. Adsorption performance of ZnFe-LDHs modified fly ash to cadmium ions in simulated wastewater[J]. Chinese Journal of Environmental Engineering,2022,16(5):1429−1439. doi: 10.12030/j.cjee.202112143
|
[30] |
NIU C X,LI S L,ZHOU G,et al. Preparation and characterization of magnetic modified bone charcoal for removing Cu2+ ions from industrial and mining wastewater[J]. Journal of Environmental Management,2021,297:113221. doi: 10.1016/j.jenvman.2021.113221
|
[31] |
ZHOU G,LI S L,MENG Q Z,et al. A new type of highly efficient fir sawdust-based super adsorbent:Remove cationic dyes from wastewater[J]. Surfaces and Interfaces,2023,36:102637. doi: 10.1016/j.surfin.2023.102637
|
[32] |
刘杨眉,魏桃员,王欣,等. 包埋固定化海洋硅藻吸附材料的制备及其对水中铅离子的吸附特性研究[J]. 环境科学学报,2017,37(5):1763−1773.
LIU Yangmei,WEI Taoyuan,WANG Xin,et al. Preparation and characterization of immobilized marine diatom adsorbent for lead ion removal from aqueous solution[J]. Acta Scientiae Circumstantiae,2017,37(5):1763−1773.
|
[33] |
朱曦,衣萌萌,王淼,等. 微生物固定化载体筛选及其水质处理效果研究[J]. 淡水渔业,2017,47(3):58−65. doi: 10.3969/j.issn.1000-6907.2017.03.009
ZHU Xi,YI Mengmeng,WANG Miao,et al. Studies on screening of immobilized-microbe carriers and their effects for aquaculture wastewater treatment[J]. Freshwater Fisheries,2017,47(3):58−65. doi: 10.3969/j.issn.1000-6907.2017.03.009
|
[34] |
李晓腾,吕剑桥,马椽栋,等. 工业废水中金属离子对水煤浆性能的影响及作用机理研究[J]. 山东科技大学学报(自然科学版),2023,42(1):49−56.
LI Xiaoteng,LYU Jianqiao,MA Chuandong,et al. Effect of metal ions in industrial wastewater on the performance of coal water slurry and its mechanism[J]. Journal of Shandong University of Science and Technology (Natural Science),2023,42(1):49−56.
|
[35] |
刘力章,黄锦勇,吴春芳. 正交试验法在固定化微生物技术处理乳品废水工艺条件优化中的应用[J]. 江西科学,2010,28(6):772−774.
LIU Lizhang,HUANG Jinyong,WU Chunfang. Application of orthogonal test methods in the optimization of the process conditions on treatment of dairy sewage by immobilized microorganism technology[J]. Jiangxi Science,2010,28(6):772−774.
|
[36] |
ZHOU G,JIA X C,ZHANG X Y,et al. Multi-walled carbon nanotube-modified hydrothermal carbon:A potent carbon material for efficient remediation of cadmium-contaminated soil in coal gangue piling site[J]. Chemosphere,2022,307:135605. doi: 10.1016/j.chemosphere.2022.135605
|
[37] |
CHEN L,JIANG X,QU N,et al. Selective adsorption and efficient degradation of oil pollution by microorganisms immobilized natural biomass aerogels with aligned channels[J]. Materials Today Sustainability,2022,19:100208. doi: 10.1016/j.mtsust.2022.100208
|
[38] |
QIAO S Y,ZENG G Q,WANG X T,et al. Multiple heavy metals immobilization based on microbially induced carbonate precipitation by ureolytic bacteria and the precipitation patterns exploration[J]. Chemosphere,2021,274:129661. doi: 10.1016/j.chemosphere.2021.129661
|
[39] |
QIN S M,ZHANG H Y,HE Y H,et al. Improving radish phosphorus utilization efficiency and inhibiting Cd and Pb uptake by using heavy metal-immobilizing and phosphate-solubilizing bacteria[J]. Science of the Total Environment,2023,868:161685. doi: 10.1016/j.scitotenv.2023.161685
|
[40] |
李大军,周立,王庆龙,等. 固定化生物吸附剂对废水中Pb2+和Cd2+的吸附性能[J]. 过程工程学报,2017,17(2):248−253. doi: 10.12034/j.issn.1009-606X.216299
LI Dajun,ZHOU Li,WANG Qinglong,et al. Adsorption performance of Pb2+ and Cd2+ in wastewater by immobilized bio-adsorbent[J]. The Chinese Journal of Process Engineering,2017,17(2):248−253. doi: 10.12034/j.issn.1009-606X.216299
|
[41] |
SEN R,JHA P,JOBBY R. Immobilized fungal technology:a new perspective for bioremediation of heavy metals[M]//Bioremediation for environmental sustainability. Amsterdam:Elsevier,2021:541−559.
|
[42] |
SUN S C,HUANG X F,LIN J H,et al. Study on the effects of catalysts on the immobilization efficiency and mechanism of heavy metals during the microwave pyrolysis of sludge[J]. Waste Management,2018,77:131−139. doi: 10.1016/j.wasman.2018.04.046
|
[43] |
TENG Z D,SHAO W,ZHANG K Y,et al. Characterization of phosphate solubilizing bacteria isolated from heavy metal contaminated soils and their potential for lead immobilization[J]. Journal of Environmental Management,2019,231:189−197.
|
[44] |
WANG J J,CHEN R,FAN L,et al. Construction of fungi-microalgae symbiotic system and adsorption study of heavy metal ions[J]. Separation and Purification Technology,2021,268:118689.
|
[45] |
曲娟娟,彭泓杨,顾海东,等. 一种真菌吸附剂对废水中Pb2+的吸附[J]. 东北农业大学学报,2014,45(7):31−37.
QU Juanjuan,PENG Hongyang,GU Haidong,et al. Adsoption of Pb2+ in waste water by a fungal absorbent[J]. Journal of Northeast Agricultural University,2014,45(7):31−37.
|
[46] |
林晓燕,牟仁祥,曹赵云,等. 耐镉细菌菌株的分离及其吸附镉机理研究[J]. 农业环境科学学报,2015,34(9):1700−1706. doi: 10.11654/jaes.2015.09.011
LIN Xiaoyan,MOU Renxiang,CAO Zhaoyun,et al. Isolation and cadmium adsorption mechanisms of cadmium-resistant bacteria strains[J]. Journal of Agro-Environment Science,2015,34(9):1700−1706. doi: 10.11654/jaes.2015.09.011
|
[47] |
刘明普,林梦宇,胡善沛,等. 生物质表面活性剂对低阶煤脱水性能影响及作用机理研究[J]. 山东科技大学学报(自然科学版),2021,40(4):28−37.
LIU Mingpu,LIN Mengyu,HU Shanpei,et al. Effect of biomass surfactant on dehydration performance of low-rank coal and its mechanism[J]. Journal of Shandong University of Science and Technology (Natural Science),2021,40(4):28−37.
|
[48] |
孙珮铭,邱萌萌,吴玉斌,等. 小球藻与硝化细菌对食品厂污水中氨氮和总氮的去除研究[J]. 山东科技大学学报(自然科学版),2021,40(1):43−49.
SUN Peiming,QIU Mengmeng,WU Yubin,et al. Studies on removal of ammonia nitrogen and total nitrogen from food factory sewage by chlorella and nitrifying bacteria[J]. Journal of Shandong University of Science and Technology (Natural Science),2021,40(1):43−49.
|
[49] |
宋磊. 磁性氧化石墨烯固定化耐受菌株吸附重金属Cd2+的研究[D]. 荆州:长江大学,2020.
SONG Lei. Adsorption of heavy metal Cd2+ by magnetic graphene oxide immobilized resistant strains[D]. Jingzhou:Yangtze University,2020.
|
[50] |
WANG M M,LIU H L,CHENG X M,et al. Hydrothermal treatment of lincomycin mycelial residues:Antibiotic resistance genes reduction and heavy metals immobilization[J]. Bioresource Technology,2019,271:143−149.
|
[51] |
WANG X Y,HUANG N,SHAO J,et al. Coupling heavy metal resistance and oxygen flexibility for bioremoval of copper ions by newly isolated Citrobacter freundii JPG1[J]. Journal of Environmental Management,2018,226:194−200.
|
[52] |
KHAN Z,ELAHI A,BUKHARI D A,et al. Cadmium sources,toxicity,resistance and removal by microorganisms-a potential strategy for cadmium eradication[J]. Journal of Saudi Chemical Society,2022,26(6):101569.
|
[53] |
WANG Y,LUO Y,ZENG G Q,et al. Characteristics and in situ remediation effects of heavy metal immobilizing bacteria on cadmium and nickel co-contaminated soil[J]. Ecotoxicology and Environmental Safety,2020,192:110294.
|
[54] |
LI X F,SUN M L,ZHANG L T,et al. Widespread bacterial responses and their mechanism of bacterial metallogenic detoxification under high concentrations of heavy metals[J]. Ecotoxicology and Environmental Safety,2022,246:114193. doi: 10.1016/j.ecoenv.2022.114193
|
[55] |
LI R,WANG B,NIU A P,et al. Application of biochar immobilized microorganisms for pollutants removal from wastewater:A review[J]. Science of the Total Environment,2022,837:155563.
|