Advance Search
ZHANG Zhiyi,ZHAO Bo,GUAN Weiming,et al. Numerical simulation of bearing capacity of aeolian sand-gabion[J]. Coal Science and Technology,2025,53(4):220−232. DOI: 10.12438/cst.2024-0035
Citation: ZHANG Zhiyi,ZHAO Bo,GUAN Weiming,et al. Numerical simulation of bearing capacity of aeolian sand-gabion[J]. Coal Science and Technology,2025,53(4):220−232. DOI: 10.12438/cst.2024-0035

Numerical simulation of bearing capacity of aeolian sand-gabion

More Information
  • Received Date: January 07, 2024
  • Available Online: April 14, 2025
  • Aeolian sand is widely distributed in the northwest region of China and serves as an ideal solid filling material. Providing lateral constraint is an effective way to utilize this granular material. Taking Aeolian sand backfilling cages as the research object, the bearing capacity was studied through uniaxial compression experiments, numerical simulation experiments, and theoretical analysis. The results show that the peak stress at the time of model failure increases with the increase of wire diameter and mesh count based on uniaxial compression experiments, while it decreases with the increase of cage size. Similarly, for large-sized Aeolian sand backfilling cages, the peak stress at the time of failure also decreases with the increase in size, and the failure occurs at the boundary connection. According to the ANSYS simulation results of the stress and deformation of the backfilling cages, the lateral constraint strength is crucial for the deformation of Aeolian sand backfilling bodies. The maximum lateral deformation of the backfilling cages occurs near the opening, and the lateral deformation distribution shows a characteristic of larger upper part and smaller lower part. The lateral restraint force provided by the lateral mesh of the backfilling cages increases with the increase in lateral deformation of the cages. When backfilling cages of different metal mesh specifications are subjected to the same load, the lateral deformation of the metal cages increases with the increase in cage size and aperture, and decreases with the increase in wire diameter. When the lateral deformations of different cages are the same, the lateral constraint force provided by the cages to the Aeolian sand decreases with the increase in cage size and aperture, and increases with the increase in wire diameter. The numerical simulation results of the wire tension of the cages with a size of 600 mm, aperture of 50 mm, and wire diameter of 6 mm were compared with the theoretical analysis results, and the error of the wire tension obtained from both methods was less than 5% under different deformation conditions.

  • [1]
    于琳倩,李景文,李俊清,等. 中国沙漠、戈壁自然资源分类体系及其组成特点[J]. 内蒙古农业大学学报(自然科学版),2014,35(1):59−66.

    YU Linqian,LI Jingwen,LI Junqing,et al. Classification and specialty of the natural resources in the desert and Gobi ecosystem in China[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition),2014,35(1):59−66.
    [2]
    李宏图. 不同加筋方式对风积沙路堤稳定性的影响分析[J]. 路基工程,2018(5):119−123.

    LI Hongtu. Influence of different reinforcement methods on stability of aeolian sand embankment[J]. Subgrade Engineering,2018(5):119−123.
    [3]
    刘城. 风积沙及加筋风积沙填筑重载铁路路基的工程特性研究[D]. 兰州:兰州交通大学,2017.

    LIU Cheng. Study on engineering characteristics of aeolian sand and reinforced aeolian sand filling heavy-duty railway subgrade[D]. Lanzhou: Lanzhou Jiatong University, 2017.
    [4]
    边丹. 风积沙路堤边坡稳定性分析[D]. 沈阳:东北大学,2015.

    BIAN Dan. Stability analysis of aeolian sand embankment slope[D]. Shenyang:Northeastern University,2015.
    [5]
    李驰,王建华. 加筋风积砂地基承载力试验研究及计算分析[J]. 岩石力学与工程学报,2005,24(4):687−691. doi: 10.3321/j.issn:1000-6915.2005.04.024

    LI Chi,WANG Jianhua. Model testing study and calculating analysis of bearing capacity on the reinforced aeolian sands ground[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(4):687−691. doi: 10.3321/j.issn:1000-6915.2005.04.024
    [6]
    崔锋,张华兴,刘鹏亮,等. 沙漠边缘煤矿风积砂膏体充填保水开采研究[J]. 煤炭科学技术,2011,39(2):10−13.

    CUI Feng,ZHANG Huaxing,LIU Pengliang,et al. Study on water conservation mining with aeolian sand paste backfill in coal mine at desert border[J]. Coal Science and Technology,2011,39(2):10−13.
    [7]
    张世凯. 假顶金属网受力初步分析[J]. 煤炭科学技术,1994,22(2):38−43.

    ZHANG Shikai. Preliminary analysis on the stress of false roof metal mesh[J]. Coal Science and Technology,1994,22(2):38−43.
    [8]
    葛凤忠. 经纬金属网受载变形及力学性能分析[J]. 西安科技大学学报,2015,35(4):524−528.

    GE Fengzhong. Deformation and mechanical properties analysis of warp/weft wire mesh under load[J]. Journal of Xi’an University of Science and Technology,2015,35(4):524−528.
    [9]
    孙志勇,林健. 锚杆支护金属网力学性能理论分析[J]. 煤炭技术,2014,33(10):98−100.

    SUN Zhiyong,LIN Jian. Theoretical analysis on mechanical performance of bolt metal meshes[J]. Coal Technology,2014,33(10):98−100.
    [10]
    原贵阳,高富强,娄金福,等. 锚杆支护金属网力学性能及传力机制试验研究[J]. 煤炭学报,2022,47(4):1512−1522.

    YUAN Guiyang,GAO Fuqiang,LOU Jinfu,et al. Experimental study on mechanical properties and force transfer mechanism of bolt supported metal mesh[J]. Journal of China Coal Society,2022,47(4):1512−1522.
    [11]
    原贵阳, 孙志勇, 李建忠. 锚杆支护钢筋网传力机制及分区承载试验研究[J]. 煤矿安全,2019,50(12):54−59.

    YUAN Guiyang, SUN Zhiyong, LI Jianzhong. Experimental study on force transfer mechanism and zonal bearing capacity of reinforcement mesh with bolt support[J]. Safety in Coal Mines,2019,50(12):54−59.
    [12]
    梁玉柱. 深部松软破碎煤巷高强锚网支护技术研究与应用[J]. 现代矿业,2019,35(2):217−219,224.

    LIANG Yuzhu. Research and application of high strength anchor-mesh support technology in deep soft and fractured coal roadway[J]. Modern Mining,2019,35(2):217−219,224.
    [13]
    王玲. 金属丝网箱结构在连申线通榆河航道盐城段养护工程中的应用分析[J]. 中国水运,2021,21(12):103−104.

    WANG Ling. Application and analysis of wire cage structure in Yancheng section of Tongyu River channel of Lianshen line[J]. China Water Transport,2021,21(12):103−104.
    [14]
    LIU X S,WANG W J,LIU Q,et al. The mechanism of reinforced backfill body with flexible mesh[J]. Advances in Civil Engineering,2021,2021(1):5569708. doi: 10.1155/2021/5569708
    [15]
    BATHLER T,KLEMETTI T,MATTHEWS T. Performance character-istics for large section of welded wire screen with multiple pull patterns[C]//Xuzhou:37th Intemational Conference on Ground Contrlin Mining,China ,2018:169−174.
    [16]
    付玉凯,孙志勇,鞠文君. 冲击地压巷道锚杆支护金属网静载和动载力学性能试验研究[J]. 煤炭学报,2019,44(7):2020−2029.

    FU Yukai,SUN Zhiyong,JU Wenjun. Experimental study on static and dynamic mechanical properties of bolting wire mesh in rock burst roadway[J]. Journal of China Coal Society,2019,44(7):2020−2029.
    [17]
    李瑞强. 陕北地区第四系风积沙挡土结构物受力研究[J]. 中阿科技论坛(中英文),2021(8):64−66.

    LI Ruiqiang. Study on the force of retaining structure of quaternary aeolian sand in northern Shaanxi[J]. China-Arab States Science and Technology Forum,2021(8):64−66.
    [18]
    路启荣,张东升. 充填体空间锚栓加固网及其应用[J]. 中国煤炭,2003,29(1):32−33. doi: 10.3969/j.issn.1006-530X.2003.01.013

    LU Qirong,ZHANG Dongsheng. Reinforced wire-mesh bolting for use in stowed space and its applications[J]. China Coal,2003,29(1):32−33. doi: 10.3969/j.issn.1006-530X.2003.01.013
    [19]
    苟晓梅. 高应力破碎围岩支护中两种金属网的对比试验研究[D]. 绵阳:西南科技大学,2016.

    GOU Xiaomei. Comparative experimental study on two kinds of metal mesh in high stress broken surrounding rock support[D]. Mianyang:Southwest University of Science and Technology,2016.
    [20]
    李英勇,张顶立,张宏博,等. 边坡加固中预应力锚索失效机制与失效效应研究[J]. 岩土力学,2010,31(1):144−150,157. doi: 10.3969/j.issn.1000-7598.2010.01.026

    LI Yingyong,ZHANG Dingli,ZHANG Hongbo,et al. Research on failure mechanism and effects of prestressed anchor cables for reinforcing slopes[J]. Rock and Soil Mechanics,2010,31(1):144−150,157. doi: 10.3969/j.issn.1000-7598.2010.01.026
    [21]
    高顺平. 金属网在锚网支护中的作用机理与应用研究[J]. 华北科技学院学报,2004,1(4):73−74. doi: 10.3969/j.issn.1672-7169.2004.04.018

    GAO Shunping. Research on the acting mechanism and application of metal net in bolt net support[J]. Journal of North China Institute of Science and Technology,2004,1(4):73−74. doi: 10.3969/j.issn.1672-7169.2004.04.018
    [22]
    薛嘉麟,杜强. 基于可视化试验的风积沙宏细观力学特性分析[J]. 西安理工大学学报,2022,38(2):287−294.

    XUE Jialin,DU Qiang. Macro-meso mechanical characteristics analysis of aeolian sand in visual test[J]. Journal of Xi’an University of Technology,2022,38(2):287−294.
    [23]
    王亚磊. 风积砂包裹式加筋挡土墙的工程特性研究[D]. 包头:内蒙古科技大学,2014.

    WANG Yalei. Study on engineering characteristics of aeolian sand wrapped reinforced retaining wall[D]. Baotou:Inner Mongolia University of Science & Technology,2014.
    [24]
    巩桢翰. 风积沙及物理改良风积沙填筑重载铁路路基的工程特性研究[D]. 兰州:兰州交通大学,2020.

    GONG Zhenhan. Study on engineering characteristics of aeolian sand and physically improved aeolian sand filling heavy-haul railway subgrade[D]. Lanzhou:Lanzhou Jiatong University,2020.
    [25]
    孙志勇,林健. 锚杆支护焊接钢筋网力学性能研究[J]. 煤矿开采,2011(1):14−16. doi: 10.3969/j.issn.1006-6225.2011.01.005

    SUN Zhiyong,LIN Jian. Mechanical characteristic of steel fabric welded to anchored bolt[J]. Coal Mining Technology,2011(1):14−16. doi: 10.3969/j.issn.1006-6225.2011.01.005
    [26]
    黄祺临,汪敏,陈辉国,等. 金属网在刚性弹头静压下的力学性能分析[J]. 工程力学,2023,40(11):227−235. doi: 10.6052/j.issn.1000-4750.2022.08.0752

    HUANG Qilin,WANG Min,CHEN Huiguo,et al. Mechanical performance analysis on the wire nets under static pressure by rigid warhead[J]. Engineering Mechanics,2023,40(11):227−235. doi: 10.6052/j.issn.1000-4750.2022.08.0752
    [27]
    严肃,张世凯,陈维国,等. 金属网受力浅析[J]. 中州煤炭,1987,9(3):7−12.

    YAN Su,ZHANG Shikai,CHEN Weiguo,et al. Analysis on the stress of metal mesh[J]. Zhongzhou Coal,1987,9(3):7−12.
    [28]
    孙克国,张宇,许炜萍,等. 考虑承载-破坏全过程的钢筋网力学行为分析与预测[J]. 工程力学,2023,40(3):175−188. doi: 10.6052/j.issn.1000-4750.2021.09.0724

    SUN Keguo,ZHANG Yu,XU Weiping,et al. Analysis and prediction of mechanical behavior of steel mesh considering the whole loading-failure process[J]. Engineering Mechanics,2023,40(3):175−188. doi: 10.6052/j.issn.1000-4750.2021.09.0724
    [29]
    张生辉,李志勇,彭帝,等. 风积沙作为路基填料的静力特性研究[J]. 岩土力学,2007,28(12):2511−2516. doi: 10.3969/j.issn.1000-7598.2007.12.005

    ZHANG Shenghui,LI Zhiyong,PENG Di,et al. Study of static property of aeolian sand used as roadbed[J]. Rock and Soil Mechanics,2007,28(12):2511−2516. doi: 10.3969/j.issn.1000-7598.2007.12.005
    [30]
    牟献友,谷攀. 国内风积沙工程特性研究综述[J]. 内蒙古农业大学学报(自然科学版),2010,31(1):307−310.

    MOU Xianyou,GU Pan. Review on engineering characteristics of wind-blown sand[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition),2010,31(1):307−310.
    [31]
    刘斯宏,薛向华,樊科伟,等. 土工袋柔性挡墙位移模式及土压力研究[J]. 岩土工程学报,2014,36(12):2267−2273. doi: 10.11779/CJGE201412015

    LIU Sihong,XUE Xianghua,FAN Kewei,et al. Earth pressure and deformation mode of a retaining wall constructed with soilbags[J]. Chinese Journal of Geotechnical Engineering,2014,36(12):2267−2273. doi: 10.11779/CJGE201412015
    [32]
    刘斯宏,沈超敏,程德虎,等. 土工袋加固膨胀土边坡降雨-日晒循环试验研究[J]. 岩土力学,2022,43(S2):35−42.

    LIU Sihong,SHEN Chaomin,CHENG Dehu,et al. Experimental study on rain-Sun cycle of expansive soil slope strengthened by geotextile bag[J]. Rock and Soil Mechanics,2022,43(S2):35−42.
    [33]
    李明轩. 极软煤巷金属网力学特性分析[D]. 徐州:中国矿业大学,2021.

    LI Mingxuan. Analysis of mechanical characteristics of metal mesh in extremely soft coal roadway[D]. Xuzhou:China University of Mining and Technology,2021.
  • Related Articles

    [1]LI Yongan, CHEN Tengjie, WANG Hongwei, ZHANG Zhihao. Multi task detection method for operating status of belt conveyor based on DR-YOLOM[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(S1): 454-467. DOI: 10.12438/cst.2024-0566
    [2]XU Changyou, CHEN Gang, ZHANG Qiuxia, WANG Bo, ZHANG Hongwang, LI Hongrui, QIN Weiwei, LI Muyang. Machine learning-based prediction method for open-pit mining truck speed distribution in manned operation[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(S1): 435-442. DOI: 10.12438/cst.2023-1490
    [3]ZHU Yantong, LIU Peng, WANG Yongbo, YANG Peng, LI Chuanxiang, FAN Li, WANG Zijiang. Multi-sensor fusion-based intelligent supervision system for coal storage yard operation safety[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(S2): 331-342. DOI: 10.12438/cst.2023-1675
    [4]XIE Jiacheng, ZHENG Ziying, WANG Xuewen, MENG Hao, LIU Shuguang, LI Suhua. Preliminary research on the operation mode of virtual-real integration in fully-mechanized mining face based on industrial metaverse[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(10): 266-279. DOI: 10.13199/j.cnki.cst.2022-1864
    [5]LIU Pengzhong, NIU Fang, WANG Pengtao, ZHOU Jianming, WANG Naiji. Experiment study on combustion characteristic of swirl burner with precombustion chamber under low-load operation[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(8): 285-291.
    [6]LIU Xiaoyang, HUO Yiwei. Underground personnel face recognition method based on multi-scale unified LBP operator[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (12).
    [7]Gao Xiangdong Wang Yanbin Zhang Chongchong, . Study and analysis on coal structure features during drilling operation and well wall stability[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (5).
    [8]Luo Yunxiao Zhao Jie Wang Yingwei Mei Li He Jingfeng, . Fluidization stability of vibrated fluidized bed and optimization of operating factors for fine coal separation[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (6).
    [9]Borehole Drilling Operation Technology and Analysis on Formation of Base Rock Weathered and Broken Zone in Yangcun Mine[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (11).
    [10]Monitoring and Analysis on Operation Performances of 6.2 m High Cutting Hydraulic Powered Support Under Complicated Seam Conditions[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (3).

Catalog

    Article views (32) PDF downloads (31) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return