Citation: | MA Xuezhou,WEN Yingyuan,CAO Anye,et al. Analysis of microstructure damage characteristics and energy release law of coal weakened by microwave[J]. Coal Science and Technology,2025,53(4):233−243. DOI: 10.12438/cst.2023-2019 |
Microwave irradiation technology has been proposed as a new method for rock burst prevention and control, which can effectively reduce the physical and mechanical properties of coal. In order to explore the microstructural damage weakening effect of microwave irradiation on coal, through nuclear magnetic resonance, mechanical test and acoustic emission monitoring of coal samples, it is clear that the energy damage amount of coal samples is proportional to the pore damage amount, and it is revealed that the dissipated strain energy and accumulated strain energy of coal samples increase and decrease with the increase of porosity, respectively. It is proposed that microwave irradiation can promote the pore development of coal samples to reduce the risk of impact damage. The results show that: ① microwave irradiation promotes the proportion of large pores to 8.00% after the expansion and development of small and medium pores in coal samples, the porosity of coal samples increases from 1.63% to 3.00%, the amount of energy damage increases from 0.089 to 0.106, and the increment of pore damage of coal samples accounts for 88.24% of the increment of energy damage of coal samples. It is clarified that the damage weakening effect of microwave irradiated coal is affected by the increase of porosity. ② The acoustic emission signal of coal sample moves forward on the stress-strain curve after microwave. The ringing count before the peak increases from 0.48 times/s to 0.58 times/s, and the cumulative acoustic emission ringing count increases by 105.77%. The coal sample was damaged in the fracture compaction stage and the elastic stage in advance. ③ After microwave irradiation, the acoustic emission energy of coal samples increased by 60.29%, 24.53% and 33.79% respectively in the crack compaction stage, elastic stage and unstable fracture development stage, while the acoustic emission energy decreased by 38.17% in the stable fracture development stage of microcracks, and the overall acoustic emission energy in the pre-peak section of stress-strain curve increased significantly. ④ After microwave irradiation, the strain energy accumulated before the peak of the coal sample is reduced by 67.7%, and the pore dissipation strain energy mapped by the acoustic emission energy is increased by 19.68%. Therefore, the residual strain energy released during the loading failure of the coal sample is significantly reduced, which reduces the risk of impact failure.
[1] |
窦林名,田鑫元,曹安业,等. 我国煤矿冲击地压防治现状与难题[J]. 煤炭学报,2022,47(1):152−171.
DOU Linming,TIAN Xinyuan,CAO Anye,et al. Present situation and problems of coal mine rock burst prevention and control in China[J]. Journal of China Coal Society,2022,47(1):152−171.
|
[2] |
姜福兴,张翔,朱斯陶. 煤矿冲击地压防治体系中的关键问题探讨[J]. 煤炭科学技术,2023,51(1):203−213.
JIANG Fuxing,ZHANG Xiang,ZHU Sitao. Discussion on key problems in prevention and control system of coal mine rock burst[J]. Coal Science and Technology,2023,51(1):203−213.
|
[3] |
齐庆新,马世志,孙希奎,等. 煤矿冲击地压源头防治理论与技术架构[J]. 煤炭学报,2023,48(5):1861−1874.
QI Qingxin,MA Shizhi,SUN Xikui,et al. Theory and technical framework of coal mine rock burst origin prevention[J]. Journal of China Coal Society,2023,48(5):1861−1874.
|
[4] |
潘俊锋,康红普,闫耀东,等. 顶板 “人造解放层” 防治冲击地压方法、机理及应用[J]. 煤炭学报,2023,48(2):636−648.
PAN Junfeng,KANG Hongpu,YAN Yaodong,et al. The method,mechanism and application of preventing rock burst by artificial liberation layer of roof[J]. Journal of China Coal Society,2023,48(2):636−648.
|
[5] |
潘一山,宋义敏,朱晨利,等. 冲击地压预测的煤岩变形局部化方法[J]. 煤炭学报,2023,48(1):185−198.
PAN Yishan,SONG Yimin,ZHU Chenli,et al. Localization method of coal rock deformation for rock burst prediction[J]. Journal of China Coal Society,2023,48(1):185−198.
|
[6] |
谭云亮,张修峰,肖自义,等. 冲击地压主控因素及孕灾机制[J]. 煤炭学报,2024,49(1):367−379.
TAN Yunliang,ZHANG Xiufeng,XIAO Ziyi,et al. Analysis of main control factors of rock burst and disaster mechanism[J]. Journal of China Coal Society,2024,49(1):367−379.
|
[7] |
张修峰,陈洋. 煤柱型冲击地压类型、发生机理与防治对策研究[J]. 煤炭科学技术,2023,51(10):1−11. doi: 10.12438/cst.2022-1608
ZHANG Xiufeng,CHEN Yang. Research on the type and occurrence mechanism and prevention of coal pillar rockbursts[J]. Coal Science and Technology,2023,51(10):1−11. doi: 10.12438/cst.2022-1608
|
[8] |
WEN Y Y,CAO A Y,DING C H,et al. Optimization of destressing parameters of water jet slits in rock burst coal seams for deep mining[J]. Processes,2023,11(4):1056.
|
[9] |
SONG D Z,WANG E Y,LIU Z T,et al. Numerical simulation of rock-burst relief and prevention by water-jet cutting[J]. International Journal of Rock Mechanics and Mining Sciences,2014,70:318−331. doi: 10.1016/j.ijrmms.2014.05.015
|
[10] |
窦林名,阚吉亮,李许伟,等. 断顶爆破防治冲击矿压技术体系及效果评价研究[J]. 煤炭科学技术,2020,48(1):24−32.
DOU Linming,KAN Jiliang,LI Xuwei,et al. Study on prevention technology of rock burst by break-tip blasting and its effect estimation[J]. Coal Science and Technology,2020,48(1):24−32.
|
[11] |
赵沁华,赵晓豹,郑彦龙,等. 微波照射下矿物升温特性与岩石弱化效果研究综述[J]. 高校地质学报,2020,26(3):350−360.
ZHAO Qinhua,ZHAO Xiaobao,ZHENG Yanlong,et al. A review on mineral heating characteristics and rock weakening effect under microwave irradiation[J]. Geological Journal of China Universities,2020,26(3):350−360.
|
[12] |
乔兰,郝家旺,李占金,等. 基于微波加热技术的硬岩破裂方法探究[J]. 煤炭学报,2021,46(S1):241−252.
QIAO Lan,HAOo Jiawang,LI Zhanjin,et al. Research on the method of hard rock cracking based on microwave heating technology[J]. Journal of China Coal Society,2021,46(S1):241−252.
|
[13] |
刘成龙,夏举佩,范辉,等. 微波技术在煤矸石资源化应用的研究进展[J]. 应用化工,2019,48(9):2246−2250. doi: 10.3969/j.issn.1671-3206.2019.09.051
LIU Chenglong,XIA Jupei,FAN Hui,et al. Research progress on applications of microwave technique in reclamation of coal gangue[J]. Applied Chemical Industry,2019,48(9):2246−2250. doi: 10.3969/j.issn.1671-3206.2019.09.051
|
[14] |
张永利,刘婷,马玉林,等. 微波辐射煤体孔裂隙结构与渗流特性[J]. 辽宁工程技术大学学报(自然科学版),2022,41(6):481−489.
ZHANG Yongli,LIU Ting,MA Yulin,et al. Coal pore and fissure structure and permeability under microwave radiation[J]. Journal of Liaoning Technical University (Natural Science),2022,41(6):481−489.
|
[15] |
胡国忠,王春博,许家林,等. 微波辐射降低硬煤冲击倾向性试验研究[J]. 煤炭学报,2021,46(2):450−465.
HU Guozhong,WANG Chunbo,XU Jialin,et al. Experimental investigation on decreasing burst tendency of hard coal using microwave irradiation[J]. Journal of China Coal Society,2021,46(2):450−465.
|
[16] |
WEN Y Y,GUAN W M,ZHAO H C,et al. Modification of coal samples with bursting liability subjected to microwave irradiation[J]. Shock and Vibration,2021,2021(1):1867771. doi: 10.1155/2021/1867771
|
[17] |
HASSANI F,SHADI A,RAFEZI H,et al. Energy analysis of the effectiveness of microwave-assisted fragmentation[J]. Minerals Engineering,2020,159:106642.
|
[18] |
齐消寒,王品,侯双荣,等. 不同功率微波预处理煤样增透效果及能量变化研究[J]. 矿业科学学报,2024,9(1):66−76.
QI Xiaohan,WANG Pin,HOU Shuangrong,et al. Study on the effect of penetration enhancement and energy change of coal samples pretreated with different microwave powers[J]. Journal of Mining Science and Technology,2024,9(1):66−76.
|
[19] |
单鹏飞,杨攀,来兴平,等. 微波–水交互作用下富油煤岩渐进性破坏规律试验[J]. 岩石力学与工程学报,2023,42(S2):3884−3896.
SHAN Pengfei,YANG Pan,LAI Xingping,et al. Experiment on progressive failure law of tar-rich coal under microwave-water interaction[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(S2):3884−3896.
|
[20] |
TANG M Y,GAO M Z,LI S W,et al. Failure behavior and energy evolution characteristics of deep roadway sandstone under different microwave irradiation modes[J]. Journal of Central South University,2023,30(1):214−226. doi: 10.1007/s11771-023-5237-4
|
[21] |
戴俊,李栋烁,宋四达. 微波照射方式对玄武岩损伤特性影响研究[J]. 煤炭技术,2018,37(8):311−314.
DAI Jun,LI Dongshuo,SONG Sida. Study on basalt damage characteristics due to microwave irradiation method[J]. Coal Technology,2018,37(8):311−314.
|
[22] |
国家质量监督检验检疫总局,中国国家标准化管理委员会. 煤和岩石物理力学性质测定方法 第7部分:单轴抗压强度测定及软化系数计算方法:GB/T 23561.7—2009[S]. 北京:中国标准出版社,2009.
|
[23] |
俎栋林. 核磁共振成像学[M]. 北京:高等教育出版社,2004.
|
[24] |
TZIOTZIOU M,KARAKOSTA E,KARATASIOS I,et al. Application of 1H NMR to hydration and porosity studies of lime–pozzolan mixtures[J]. Microporous and Mesoporous Materials,2011,139(1−3):16−24.
|
[25] |
刘堂晏,肖立志,傅容珊,等. 球管孔隙模型的核磁共振(NMR)弛豫特征及应用[J]. 地球物理学报,2004,47(4):663−671. doi: 10.3321/j.issn:0001-5733.2004.04.017
LIU Tangyan,XIAO Lizhi,FU Rongshan,et al. Applications and characterization of nmr relation derived from sphere-capillary model[J]. Chinese Journal of Geophysics,2004,47(4):663−671. doi: 10.3321/j.issn:0001-5733.2004.04.017
|
[26] |
齐琦. 微波辐照下含水率对煤体孔隙特性的影响机理[D]. 乌鲁木齐:新疆大学,2021.
QI Qi. Influence mechanism of moisture content on pore characteristics of coal under microwave irradiation[D]. Urumqi:Xinjiang University,2021.
|
[27] |
司垒,李嘉豪,邢峰,等. 不同煤矸混合物的微波传播特性试验研究[J]. 煤炭科学技术,2023,51(5):219−231.
SI Lei,LI Jiahao,XING Feng,et al. Experimental study on microwave propagation characteristics of different coal-gangue mixtures[J]. Coal Science and Technology,2023,51(5):219−231.
|
[28] |
孙娜娜,孙会娜,沈莉莎,等. 磁性纳米颗粒-微波辐射对稠油O/W乳状液的协同破乳[J]. 化工进展,2022,41(6):3127−3137.
SUN Nana,SUN Huina,SHEN Lisha,et al. Synergistic demulsification of magnetic nanoparticle-microwave on heavy oil O/W emulsion[J]. Chemical Industry and Engineering Progress,2022,41(6):3127−3137.
|
[29] |
朱健,胡国忠,许家林,等. 煤层层理对微波破煤增透效果的影响[J]. 煤炭学报,2024,49(5):2324.
ZHU Jian,HU Guozhong,XU Jialin,et al. [J]. The influence of coal seam bedding on the effect of fracturing coal and enhancing permeability by microwave[J]. Journal of China Coal Society, 2024,49(5):2324.
|
[30] |
郑贵强,凌标灿,郑德庆,等. 核磁共振实验技术在煤孔径分析中的应用[J]. 华北科技学院学报,2014,11(4):1−7. doi: 10.3969/j.issn.1672-7169.2014.04.001
ZHENG Guiqiang,LING Biaocan,ZHENG Deqing,et al. The application of nuclear magnetic resonance on analyzing aperture in coal[J]. Journal of North China Institute of Science and Technology,2014,11(4):1−7. doi: 10.3969/j.issn.1672-7169.2014.04.001
|
[31] |
姚艳斌,刘大锰,蔡益栋,等. 基于NMR和X-CT的煤的孔裂隙精细定量表征[J]. 中国科学:地球科学,2010,40(11):1598−1607. doi: 10.1360/zd2010-40-11-1598
YAO Yanbin,LIU Dameng,CAI Yidong,et al. Advanced characterization of pores and fractures in coals by nuclear magnetic resonance and X-ray computed tomography[J]. Scientia Sinica (Terrae),2010,40(11):1598−1607. doi: 10.1360/zd2010-40-11-1598
|
[32] |
林柏泉,钟玉婷,曹轩,等. 循环微波辐射下煤体孔裂隙结构演化特征[J]. 西安科技大学学报,2021,41(6):964−972.
LIN Baiquan,ZHONG Yuting,CAO Xuan,et al. Effect of cyclic microwave irradiation on pore and fracture evolutions of coal[J]. Journal of Xi’an University of Science and Technology,2021,41(6):964−972.
|
[33] |
胡国忠,杨南,朱健,等. 微波辐射下含水分煤体孔渗特性及表面裂隙演化特征实验研究[J]. 煤炭学报,2020,45(S2):813−822.
HU Guozhong,YANG Nan,ZHU Jian,et al. Evolution characteristics of microwave irradiation on pore-permeability and surface cracks of coal with water:An experimental study[J]. Journal of China Coal Society,2020,45(S2):813−822.
|
[34] |
HUANG P,ZHANG J X,JEAN DAMASCENE N,et al. A fractional order viscoelastic-plastic creep model for coal sample considering initial damage accumulation[J]. Alexandria Engineering Journal,2021,60(4):3921−3930. doi: 10.1016/j.aej.2021.02.054
|
[35] |
EBERHARDT E,STEAD D,STIMPSON B,et al. Identifying crack initiation and propagation thresholds in brittle rock[J]. Canadian Geotechnical Journal,1998,35(2):222−233. doi: 10.1139/t97-091
|
[36] |
高美奔, 李天斌, 孟陆波, 等. 岩石变形破坏各阶段强度特征值确定方法[J]. 岩石力学与工程学报,2016,35(S2):3577−3588.
GAO Meiben, LI Tianbin, MENG Lubo, et al. The method to identify characteristic stresses of rock in different stages during failure process[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(S2):3577−3588.
|
[37] |
肖桃李, 袁浩, 折海成, 等. 单轴压缩条件下类大理岩裂纹起裂特性与扩展规律[J]. 水利水电技术(中英文),2022,53(8):161−171.
XIAO Taoli, YUAN Hao, ZHE Haicheng, et al. Crack initiation characteristics and propagation law of marble-like rock under uniaxial compression[J]. Water Resources and Hydropower Engineering,2022,53(8):161−171.
|
[38] |
DIEDERICHS M S,KAISER P K,EBERHARDT E. Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(5):785−812. doi: 10.1016/j.ijrmms.2004.02.003
|
[39] |
付文姜,杨建明. 高温热损伤后花岗岩声发射及特征能量研究[J]. 矿业研究与开发,2023,43(8):120−126.
FU Wenjiang,YANG Jianming. Study on acoustic emission and characteristic energy of granite after high-temperature thermal damage[J]. MINING R& . D,2023,43(8):120−126.
|
[40] |
谢和平,鞠杨,黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报,2005,24(17):3003−3010. doi: 10.3321/j.issn:1000-6915.2005.17.001
XIE Heping,JU Yang,LI Liyun. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(17):3003−3010. doi: 10.3321/j.issn:1000-6915.2005.17.001
|
[41] |
国家质量监督检验检疫总局,中国国家标准化管理委员会. 冲击地压测定、监测与防治方法 第2部分:煤的冲击倾向性分类及指数的测定方法:GB/T 25217.2—2010[S]. 北京:中国标准出版社,2011.
|