XIE Beijing,LI Xiaoxu,ZHANG Jingshun,et al. Accurate monitoring and accounting of methane emission in underground coal mine[J]. Coal Science and Technology,2024,52(4):119−130
. DOI: 10.12438/cst.2023-1992Citation: |
XIE Beijing,LI Xiaoxu,ZHANG Jingshun,et al. Accurate monitoring and accounting of methane emission in underground coal mine[J]. Coal Science and Technology,2024,52(4):119−130 . DOI: 10.12438/cst.2023-1992 |
Methane, the second most prevalent greenhouse gas globally, is characterized by its high global warming potential and short atmospheric lifetime. It is primarily emitted from sectors such as coal mining, oil and gas production, agriculture, livestock rearing, and waste management. Active, prudent, and orderly control of methane emissions offers a multifaceted benefit: it mitigates global warming, enhances the economic value through the resource utilization of energy, provides environmental advantages by control of pollutants, and improves safety by reducing production accidents. Methane is also the principal greenhouse gas emitted in coal mine operations. Currently, monitoring and researching the distribution of methane emissions and their concentration within the three-dimensional space of coal mines have become a key focus in China’s methane emission control efforts, which is of significant importance for coal mining enterprises to align with national strategies. A study conducted on a high-gas mine in Shanxi and a low-gas mine in Shaanxi for methane emission monitoring and accounting utilized fixed monitoring, manual monitoring, drone monitoring, and post-mining activity monitoring to investigate the distribution of methane in high and low gas mines in China and to analyze their methane emissions. The results indicate that: ① The methane emission volumes for a certain high-gas mine in Shanxi and a low-gas mine in Shaanxi published by the U.S.-based Climate TRACE website for the year 2022 show a significant discrepancy from the results calculated using the ground measurement method, with the published annual methane emission volume for a certain low-gas mine being 10.92 times that of the ground measurement calculation. The top-down monitoring and accounting methods have been found to be insufficiently accurate and unable to provide reliable data support for carbon trading. ② In the monitoring and accounting of post-mining activities, the use of default values recommended by the IPCC results in methane emissions that are 3 to 5 times higher than those calculated using the ground measurement method, and there is a significant variation in the emissions calculated based on coal samples of different sizes and exposure durations. There is an urgent need for a unified and precise testing standard to ensure fair and accurate data for future carbon market transactions.
[1] |
中华人民共和国国务院新闻办公室. 中国应对气候变化的政策与行动[N]. 人民日报,2021-10-28(014).
|
[2] |
中华人民共和国生态环境部. 生态环境部等11部门关于印发《甲烷排放控制行动方案》的通知[Z]. 2023-11-07.
|
[3] |
任世华,谢亚辰,焦小淼,等. 煤炭开发过程碳排放特征及碳中和发展的技术途径[J]. 工程科学与技术,2022,54(1):60−68.
REN Shihua,XIE Yachen,J IAO Xiaomiao,et al. Characteristics of carbon emissions during coal development and technical approaches for carbon neutral development[J]. Advanced Engineering Sciences,2022,54(1):60−68.
|
[4] |
李 鑫. 煤炭开发环节碳排放测算及低碳路径研究[J]. 煤炭经济研究,2021,41(7):39−44.
LI Xin. Research on carbon emission calculation and low-carbon pathway in coal development[J]. Coal Economic Research,2021,41(7):39−44.
|
[5] |
KEITH H,VARDON M,OBST C,et al. Evaluating nature-based solutions for climate mitigation and conservation requires comprehensive carbon accounting[J]. Science of the Total Environment,2022,796(1):838.
|
[6] |
苏义脑. 中国碳达峰碳中和与能源发展战略的认识与思考[J]. 世界石油工业,2022,29(4):7−11.
SU Yinao. Understandings and thinkings of China's carbon peaking,carbon neutrality and energy development strategies[J]. World oil industry,2022,29(4):7−11.
|
[7] |
项目综合报告编写组. 《中国长期低碳发展战略与转型路径研究》综合报告[J]. 中国人口·资源与环境,2020,30(11):1−25.
|
[8] |
刘文革,徐 鑫,韩甲业,等. 碳中和目标下煤矿甲烷减排趋势模型及关键技术[J]. 煤炭学报,2022,47(1):470−479.
LIU Wenge,XU Xin,HAN Jiaye,et al. Trend model and key technologies of coal mine methane emission reduction aiming for the carbon neutrality[J]. Journal of China Coal Society,2022,47(1):470−479.
|
[9] |
刘艳秋,秦 凯,COHEN Blake Jason,等. 基于涡动及走航观测的晋东南煤矿区甲烷分布特征[J]. 煤炭学报,2022,47(12):4395−4402.
LIU Yanqiu,QIN Kai,COHEN Blake Jason,et al. Analysis of the characteristics of methane in the c oal mining area of southeastern Shanxi with eddy and mobile observation[J]. Journal of China Coal Society,2022,47(12):4395−4402.
|
[10] |
樊 星,李 路,秦圆圆,等. 主要发达经济体从碳达峰到碳中和的路径及启示[J]. 气候变化研究进展,2023,19(1):102−115.
FAN Xing,LI Lu,QIN Yuanyuan,et al. The pathway from carbon peak to carbon neutrality in major developed economies and its insights [J]. Climate Change Research,2023,19(1):102−115.
|
[11] |
李树华. 基于Citespace的我国碳排放权交易研究可视化分析[C]//中国环境科学学会2022年科学技术年会——环境工程技术创新与应用分会场论文集(三). 北京:《工业建筑》杂志社有限公司. 2022:799-807.
LI Shuhua. Visual analysis of carbon emission trading research in CHINA based on cite space [C]//The 2022 Annual Conference of Science and Technology of the Chinese Society of Environmental Sciences - Proceedings of the Branch of Environmental Engineering Technology Innovation and Application (III). Beijing:Industrial Architecture Magazine Co. ,Ltd. 222:799-807.
|
[12] |
蔡博峰,朱松丽,于胜民,等. 《IPCC 2006年国家温室气体清单指南2019修订版》解读[J]. 环境工程,2019,37(8):1−11.
CAI Bofeng,ZHU Songli,YU Shengmin,et al. The ineterpretation of 2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventory[J]. Environmental Engineering,2019,37(8):1−11.
|
[13] |
IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventory [R]. Japan:The 49th Session of the IPCC,2019.
|
[14] |
李学武,张 伟,李 跃,等. 基于涌出因子分析煤炭矿区甲烷利用及减排[J]. 煤炭学报,2014,39(S2):390−396.
LI Xuewu,ZHANG Wei,LI Yue,et al. CMM utilization and emission reduction based on gush factor analysis[J]. Journal of China Coal Society,2014,39(S2):390−396.
|
[15] |
王莉莉. 永煤集团煤炭矿区碳排放核算及减排对策研究[D]. 徐州:中国矿业大学,2015:18−22.
WANG Lili. Study on the carbon emissions accounting and reduction measures of Yongmei Group Coal Mining Area. [D]. Xuzhou:China University of Mining and Technology,2015:18−22.
|
[16] |
张振芳. 露天煤矿碳排放量核算及碳减排途径研究[D]. 徐州:中国矿业大学,2013:4−17.
ZHANG Zhenfang. Study on Carbon emissions accounting and carbon emission reduction approach of surface coal mine [D]. Xuzhou:China University of Mining and Technology,2013:4−17.
|
[17] |
马翠梅,戴尔阜,刘乙辰,等. 中国煤炭开采和矿后活动甲烷逃逸排放研究[J]. 资源科学,2020,42(2):311−322.
MA Cuimei,DAI Erfu,LIU Yichen,et al. Methane fugitive emissions from coal mining and postmining activities in China[J]. Resources Science,2020,42(2):311−322.
|
[18] |
刘艳秋,秦 凯,COHEN Blake Jason,等. 基于涡动及走航观测的晋东南煤矿区甲烷浓度特征研究[J]. 煤炭学报,2022,47(12):4395−4402.
LIU Yanqiu,QIN Kai,COHEN Blake Jason,et al. Analysis of the Characteristics of Methane in the Coal Mining Area of Southeastern Shanxi with Eddy and Mobile observation[J]. Journal of China Coal Society,2022,47(12):4395−4402.
|
[19] |
MILLER S M,MICHALAK A M,DETMERS R G,et al. China’s coal mine methane regulations have not curbed growing emissions[J]. Nat Commun 2019,303(10):1−3.
|
[20] |
袁 亮,薛 生. 煤层瓦斯含量法确定保护层开采消突范围的技术及应用[J]. 煤炭学报,2014,39(9):1786−1791.
YUAN Liang,XUE Sheng. Defining outburst-free zones in protective mining with seam gas content-method and application[J]. Journal of China Coal Society,2014,39(9):1786−1791.
|
[21] |
周福宝,康建宏,王有湃,等. 煤层瓦斯含量井下一站式自动化精准测定方法[J]. 煤炭学报,2022,47(8):2873−2882.
ZHOU Fubao,KANG Jianhong,WANG Youpai,et al. Method of underground integrated automatic and accurate determination of coalbed gas content[J]. Journal of China Coal Society,2022,47(8):2873−2882.
|
[22] |
王 猛,马如英,代旭光,等. 煤矿区碳排放的确认和低碳绿色发展途径研究[J]. 煤田地质与勘探,2021,49(5):63−69.
WANG Meng,MA Ruying,DAI Xuguang,et al. Confirmation of carbon emissions in coal mining areas and research on low-carbon green development path[J]. Coal Geology & Exploration,2021,49(5):63−69.
|
[23] |
夏 丹. 中国煤炭生命周期碳排放核算与预测研究[D]. 淮南:安徽理工大学:2021:14−22.
XIA Dan. Research on accounting and forecasting of coal life cycle carbon emissions in China. [D] Huainan:Anhui University of Technology:2021:14−22.
|
[24] |
张千贵,李权山,范翔宇,等. 中国煤与煤层气共采理论技术现状及发展趋势[J]. 天然气工业,2022,42(6):130−145.
ZHANG Qiangui,LI Quanshan,FAN Xiangyu,et al. Current situation and development trend of theories and technologies for coal and CBM co-mining in China[J] Natural Gas Industry,2022,42 (6):130−145.
|
[25] |
袁 亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报,2016,41(1):1−6
YUAN Liang. Strategic thinking of simultaneous exploitation of coal and gas in deep mining[J]. Journal of China Coal Society,2016,41(1):1−6.
|
[26] |
袁 亮. 我国煤矿安全发展战略研究[J]. 中国煤炭,2021,47(6):1−6.
YUAN Liang. Study on the development strategy of coal mine safety in China[J]. China Coal,2021,47(6):1−6.
|
[27] |
刘 虹,赵美琳,赵 康,等. 山西省煤矿甲烷排放量与利用量精细测算[J]. 天然气工业,2022,42(6):179−185.
LIU Hong,LIU Meilin,ZHAO Kang,et al. Fine calculation of methane emissions and utilization amount from coal mines in Shanxi Province [J] Natural Gas Industry,2022,42(6):179−185.
|
[28] |
JU Y,SUN Y,SA Z,et al. A new approach to estimate fugitive methane emissions from coal mining in China[J]. Science of the Total Environment. 2016,543(Pt A):514−523.
|
[1] | AN Baifu, YI Qiaomei, ZHAO Xiang, YU Weijian, WANG Dongda, WANG Jiale. Experimental research on low and strength characteristics of coal slime based cemented filling material[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(S1): 13-21. DOI: 10.13199/j.cnki.cst.2022-1733 |
[2] | LI Xijian XUE Haiteng CHEN Liuyu SHEN Zhonghui XU Mingzhi XU Shiqing, . Micropore structure of outburst coal seam in Guizhou Area and its effect on gas flow[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(10). |
[3] | ZHAO Junmei, RONG Lingkun, LU Cai, BAI Chunhua, WANG Li. Study on dispersion mechanism of polycarboxylatesuperplasticizer in low rank coal water slurry[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (4). |
[4] | Yang Mingshun Xie Qiang Kang Shanjiao Liu Weibing LiuXin Qi Yongli Mei Changsong Li Chunqi, . Polycarboxylate dispersant of coal water mixture prepared based on lignite hydrothermal waste water[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (9). |
[5] | Qi Wei. Development and Application on MJS-1 Coking Coal Giesler Fluidity Testing Machine with Double Furnace[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (7). |
[6] | QU Qian-qian ZHANG Guang- hua ZHU Jun-feng WEI Ying-fei, . Study on Performances and Synthesis of Polyether Polycarboxylate Dispersant for Coal Water Slurry[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (2). |
[7] | MENG Xian-liang WANG Hong-lin WU Guo-guang MIAO Zhen-yong CHU Rui-zhi LIU Ya-fei WANG Jing WANG Yan-li ZHANG Zhong-cai, . Study on Polycarboxylate Series Dispersant of Coal Water Slurry Affected to Slurry Ability of High Ash Slime[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (10). |
[8] | Study on Effective Drainage Radius of Advance Borehole Based on Gas Flow Theory[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (2). |
[9] | Synthesis and Research on Citric Acid Polycarboxylic Dispersant of Coal Water Slurry[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (9). |
1. |
宁树正,严晓云,黄少青,徐小涛,张建强,张莉,刘亢. 中国煤中锗成矿特征与勘查进展. 煤炭科学技术. 2025(01): 225-236 .
![]() | |
2. |
魏迎春,张昀,李新,曹代勇,王安民,靳亮亮,宁树正. 煤与煤系铀矿产协同勘查技术方法. 煤炭科学技术. 2025(01): 216-224 .
![]() | |
3. |
李鹏程. 金属矿产勘查中地质找矿技术创新措施. 世界有色金属. 2025(03): 40-42 .
![]() | |
4. |
张昀,魏迎春,曹代勇,李新,靳亮亮,董博,王鑫. 煤系锂及锂同位素研究进展. 煤田地质与勘探. 2025(04): 106-118 .
![]() | |
5. |
康红普,谢和平,王双明,任世华,张亚宁,王保强,陈佩佩,焦小淼,郑德志,任仰辉,刘跃东. 煤炭与共伴生矿产资源一体化绿色开发战略研究. 中国工程科学. 2025(02): 172-183 .
![]() | |
6. |
曹代勇,魏迎春,李新,张昀,徐来鑫,位金昊,董博. 煤与煤系战略性金属矿产协同勘查理论与技术体系框架探讨. 煤炭学报. 2024(01): 479-494 .
![]() | |
7. |
魏迎春,李新,曹代勇,张昀,宁树正,徐腾跃. 煤与煤系战略性金属矿产协同勘查模型. 地质学报. 2024(08): 2517-2530 .
![]() | |
8. |
毛礼鑫,朱士飞,秦云虎,刘威,赵倩,曹磊. 电厂煤及其副产品中微量元素的环境效应与资源潜力评价. 中国煤炭. 2024(12): 188-196 .
![]() |