Citation: | LI Yapeng,WU Xiaosuo,ZHANG Qiang,et al. Modified true triaxial Hoek-Brown criterion considering intermediate principal stress effect[J]. Coal Science and Technology,2024,52(6):81−89. DOI: 10.12438/cst.2023-1988 |
In order to improve the Hoek-Brown strength criterion not considering the influence of intermediate principal stress on rock strength, the evolutions of rock strength were investigated according to the results of the rock true triaxial compression test. The intermediate principal stress coefficient was introduced to quantify the effect on rock strength. Considering the relationships between the parameter of the Hoek-Brown strength criterion and the rock stress levels, the modified Hoek-Brown strength criterion for the true triaxial stress was then established with the Lagrange interpolation method. The spatial envelope characteristics of the modified strength criterion were analyzed. The best-fitting errors of seven rocks with true triaxial test results were finally compared with the three other three-dimensional strength criteria to verify the rationality of the modified strength criterion. The research results indicate that the rock strength increases gradually with the increase of minimum principal stress, and increases first and then decreases with the increase of intermediate principal stress, which presents a significant interval effect. The modified strength criterion not only has the advantage of the Hoek-Brown strength criterion in the nonlinear characteristics of the meridian plane but also describes the basic characteristics of rock strength in stress space. The spatial envelope surfaces for the modified strength criteria with the linear and quadratic interpolation are the non-equilateral hexagonal pyramidal surfaces and conical surfaces, which can meet the requirement of continuous smoothness in the tension-compression meridian plane interval. The modified strength criterion can better predict the true triaxial strength of rocks and reasonably reflect the influence of intermediate principal stress on the rock strength. The modified strength criterion with the quadratic interpolation improves the prediction accuracy of rock strength by about 1.2 to 2.0 times compared to the criterion with linear interpolation. The modified strength criterion has good agreement with the true triaxial test results of different hard and brittle rocks compared with other true triaxial strength criteria, which shows the applicability and reliability of the modified strength criterion.
[1] |
EVERT H,BROWN EDWIN T. Empirical strength criterion for rock masses[J]. Journal of the Geotechnical Engineering Division,1980,106(9):1013−1035. doi: 10.1061/AJGEB6.0001029
|
[2] |
HOEK E,BROWN E T. Practical estimates of rock mass strength[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(8):1165−1186. doi: 10.1016/S1365-1609(97)80069-X
|
[3] |
HOEK E,BROWN E T. The Hoek–Brown failure criterion and GSI–2018 edition[J]. Journal of Rock Mechanics and Geotechnical Engineering,2019,11(3):445−463. doi: 10.1016/j.jrmge.2018.08.001
|
[4] |
ZHANG Q,LI C,QUAN X W,et al. New true-triaxial rock strength criteria considering intrinsic material characteristics[J]. Acta Mechanica Sinica,2018,34(1):130−142. doi: 10.1007/s10409-017-0723-2
|
[5] |
MA L J,LI Z,WANG M Y,et al. Applicability of a new modified explicit three-dimensional Hoek-Brown failure criterion to eight rocks[J]. International Journal of Rock Mechanics and Mining Sciences,2020,133:104311. doi: 10.1016/j.ijrmms.2020.104311
|
[6] |
YANG Q,ZAN Y W,XIE L G. Comparative analysis of the nonlinear unified strength criterion for rocks and other three-dimensional Hoek–Brown strength criteria[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources,2018,4(1):29−37. doi: 10.1007/s40948-017-0072-4
|
[7] |
YOU M Q. Mechanical characteristics of the exponential strength criterion under conventional triaxial stresses[J]. International Journal of Rock Mechanics and Mining Sciences,2010,47(2):195−204. doi: 10.1016/j.ijrmms.2009.12.006
|
[8] |
ZHANG Q,WANG S L,GE X R,et al. Modified Mohr-Coulomb strength criterion considering rock mass intrinsic material strength factorization[J]. Mining Science and Technology (China),2010,20(5):701−706. doi: 10.1016/S1674-5264(09)60266-0
|
[9] |
JIANG H,WANG X W,XIE Y L. New strength criteria for rocks under polyaxial compression[J]. Canadian Geotechnical Journal,2011,48(8):1233−1245. doi: 10.1139/t11-034
|
[10] |
VACHAPARAMPIL A,GHASSEMI A. Failure characteristics of three shales under true-triaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences,2017,100:151−159. doi: 10.1016/j.ijrmms.2017.10.018
|
[11] |
JUN Z,FENG X T,ZHANG X W,et al. Brittle-ductile transition and failure mechanism of Jinping marble under true triaxial compression[J]. Engineering Geology,2018,232:160−170. doi: 10.1016/j.enggeo.2017.11.008
|
[12] |
SINGLE B,GOEL R K,MEHROTRA V K,et al. Effect of intermediate principal stress on strength of anisotropic rock mass[J]. Tunnelling and Underground Space Technology,1998,13(1):71−79. doi: 10.1016/S0886-7798(98)00023-6
|
[13] |
王国安,马林建,刘新宇,等. 考虑中间主应力Hoek-Brown强度准则及其适用性[J]. 岩土力学,2015,36(8):2291−2297,2306.
WANG Guoan,MA Linjian,LIU Xinyu,et al. A new three-dimensional Hoek-Brown strength criterion considering effect of intermediate principal stress and its applicability[J]. Rock and Soil Mechanics,2015,36(8):2291−2297,2306.
|
[14] |
LI H Z,GUO T,NAN Y L,et al. A simplified three-dimensional extension of Hoek-Brown strength criterion[J]. Journal of Rock Mechanics and Geotechnical Engineering,2021,13(3):568−578. doi: 10.1016/j.jrmge.2020.10.004
|
[15] |
PRIEST S D. Determination of shear strength and three-dimensional yield strength for the hoek-brown criterion[J]. Rock Mechanics and Rock Engineering,2005,38(4):299−327. doi: 10.1007/s00603-005-0056-5
|
[16] |
昝月稳,俞茂宏,王思敬. 岩石的非线性统一强度准则[J]. 岩石力学与工程学报,2002,21(10):1435−1441. doi: 10.3321/j.issn:1000-6915.2002.10.001
ZAN Yuewen,YU Maohong,WANG Sijing. Nonlinear unified strength criterion of rock[J]. Chinese Journal of Rock Mechanics and Engineering,2002,21(10):1435−1441. doi: 10.3321/j.issn:1000-6915.2002.10.001
|
[17] |
HUANG J Q,ZHAO M,DU X L,et al. An elasto-plastic damage model for rocks based on a new nonlinear strength criterion[J]. Rock Mechanics and Rock Engineering,2018,51(5):1413−1429. doi: 10.1007/s00603-018-1417-1
|
[18] |
ZHANG L. A generalized three-dimensional Hoek–Brown strength criterion[J]. Rock Mechanics and Rock Engineering,2008,41(6):893−915. doi: 10.1007/s00603-008-0169-8
|
[19] |
ZHANG L Y,ZHU H H. Three-dimensional Hoek-Brown strength criterion for rocks[J]. Journal of geotechnical and geoenvironmental engineering,2007,133(9):1128−1135. doi: 10.1061/(ASCE)1090-0241(2007)133:9(1128)
|
[20] |
张诗淮. 硬脆性砂岩强度与变形特性研究[D]. 北京:北京科技大学,2019.
ZHANG Shihuai. Study on strength and deformability of hard brittle sandstone[D]. Beijing:University of Science and Technology Beijing,2019.
|
[21] |
LEE Y K,PIETRUSZCZAK S,CHOI B H. Failure criteria for rocks based on smooth approximations to Mohr–Coulomb and Hoek–Brown failure functions[J]. International Journal of Rock Mechanics and Mining Sciences,2012,56:146−160. doi: 10.1016/j.ijrmms.2012.07.032
|
[22] |
ZHANG Q,ZHU H H,ZHANG L Y. Modification of a generalized three-dimensional Hoek–Brown strength criterion[J]. International Journal of Rock Mechanics and Mining Sciences,2013,59:80−96. doi: 10.1016/j.ijrmms.2012.12.009
|
[23] |
WU S C,ZHANG S H,ZHANG G. Three-dimensional strength estimation of intact rocks using a modified Hoek-Brown criterion based on a new deviatoric function[J]. International Journal of Rock Mechanics and Mining Sciences,2018,107:181−190. doi: 10.1016/j.ijrmms.2018.04.050
|
[24] |
TAKAHASHI M,KOIDE H. Effect of the intermediate principal stress on strength and deformation behavior of sedimentary rocks At the depth shallower than 2000 m[C]. Rotterdam,1989:19-26.
|
[25] |
YAMADA Y,ISHIHARA K. Anisotropic deformation characteristics of sand under three dimensional stress conditions[J]. Soils and Foundations,1979,19(2):79−94. doi: 10.3208/sandf1972.19.2_79
|
[26] |
周火明,单治钢,李维树,等. 深埋隧洞大理岩卸载路径真三轴强度参数研究[J]. 岩石力学与工程学报,2012,31(8):1524−1529. doi: 10.3969/j.issn.1000-6915.2012.08.005
ZHOU Huoming,SHAN Zhigang,LI Weishu,et al. Study of true triaxial strength parameters in unloading path of marbles in deep tunnel[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(8):1524−1529. doi: 10.3969/j.issn.1000-6915.2012.08.005
|
[27] |
MOGI K. Experimental rock mechanics[M]. London:Taylor and Francis,2007.
|
[28] |
SRIAPAI T,WALSRI C,FUENKAJORN K. True-triaxial compressive strength of Maha Sarakham salt[J]. International Journal of Rock Mechanics and Mining Sciences,2013,61:256−265. doi: 10.1016/j.ijrmms.2013.03.010
|
[29] |
FENG X T,KONG R,YANG C X,et al. A three-dimensional failure criterion for hard rocks under true triaxial compression[J]. Rock Mechanics and Rock Engineering,2020,53:103−111. doi: 10.1007/s00603-019-01903-8
|
[30] |
MA X D,HAIMSON B C. Failure characteristics of two porous sandstones subjected to true triaxial stresses[J]. Journal of Geophysical Research:Solid Earth,2016,121:6477−6498. doi: 10.1002/2016JB012979
|
[31] |
FENG X T,KONG R,ZHANG X W,et al. Experimental study of failure differences in hard rock under true triaxial compression[J]. Rock Mechanics and Rock Engineering,2019,52(7):2109−2122. doi: 10.1007/s00603-018-1700-1
|
[32] |
MOGI K. Fracture and flow of rocks under high triaxial compression[J]. Journal of Geophysical Research,1971,76(5):1255−1269. doi: 10.1029/JB076i005p01255
|
[33] |
JIANG H. A failure criterion for rocks and concrete based on the Hoek-Brown criterion[J]. International Journal of Rock Mechanics and Mining Sciences,2017,95:62−72. doi: 10.1016/j.ijrmms.2017.04.003
|
[34] |
李修磊,陈臣,凌天清. 一种考虑主应力空间的岩石非线性真三轴强度准则[J]. 哈尔滨工业大学学报,2021,53(11):127−135. doi: 10.11918/202004072
LI Xiulei,CHEN Chen,LING Tianqing. A nonlinear true triaxial strength criterion for rocks considering principal stress space characteristics[J]. Journal of Harbin Institute of Technology,2021,53(11):127−135. doi: 10.11918/202004072
|
[35] |
PAN X D,HUDSON J A. A simplified three dimensional Hoek-Brown yield criterion[C]//Rock Mechanics and Power Plants. Rotterdam,1988:95−103.
|