Citation: | JIANG Fan,KANG Jingjing,HUANG Xingtao,et al. A positioning method for underground trackless rubber wheel vehicle based on fusion of multiple encoders and strapdown inertial navigation system[J]. Coal Science and Technology,2024,52(S2):284−293. DOI: 10.12438/cst.2023-1944 |
Aiming at the problems of low accuracy and poor reliability of traditional trackless rubber tire vehicle positioning and orientation technology in coal mines, a trackless rubber tire vehicle positioning method based on the fusion of multiple encoders and inertial navigation is proposed. Based on the characteristics of multi encoder data, a kinematic model of a trackless rubber wheel odometer was established, and a heading calculation algorithm based on multi encoder was derived. In response to the problem of positioning divergence caused by relying solely on encoder data in the aforementioned dead reckoning algorithm, a dead reckoning algorithm based on multiple encoders and strapdown inertial navigation is designed by combining wheel odometry with attitude data. This algorithm can effectively suppress the rapid accumulation of dead reckoning errors. On this basis, the extended Kalman filtering algorithm is adopted to fuse the attitude data calculated based on the kinematic model of the wheel odometer and the attitude data calculated by the strapdown inertial navigation, and improve the positioning accuracy of the heading calculation by improving the heading accuracy. Based on the extended Kalman filtering algorithm, a combined positioning model for strapdown inertial navigation/dead reckoning was established. To address the problem of decreased or even divergent filtering accuracy when modeling is inaccurate, an improved adaptive extended Kalman filtering algorithm was proposed. By estimating and adjusting measurement noise in real time, the accuracy and stability of the filtering were improved. A fault-tolerant model was established to detect and isolate abnormal driving conditions such as slipping or sliding of trackless rubber wheeled vehicles, which resulted in the failure of wheel odometers. We built a mobile car experimental system and used UWB positioning results as reference truth values to conduct comprehensive sports car experimental research. The experimental results show that the proposed combination positioning method can meet the positioning requirements of trackless rubber wheeled vehicles in coal mines underground.
[1] |
陈晓晶. 井工煤矿运输系统智能化技术现状及发展趋势[J]. 工矿自动化,2022,48(6):6−14,35.
CHEN Xiaojing. Current status and development trend of intelligent technology of underground coal mine transportation system[J]. Journal of Mine Automation,2022,48(6):6−14,35.
|
[2] |
杨利文. 无轨胶轮车在煤矿辅助运输中的应用研究[J]. 能源与节能,2023(10):167−169. doi: 10.3969/j.issn.2095-0802.2023.10.050
YANG Liwen. Application of trackless rubber wheeled vehicles in auxiliary transportation of coal mines[J]. Energy and Energy Conservation,2023(10):167−169. doi: 10.3969/j.issn.2095-0802.2023.10.050
|
[3] |
赵远,吉庆,王腾. 煤矿智能无轨辅助运输技术现状与展望[J]. 煤炭科学技术,2021,49(12):209−216. doi: 10.3969/j.issn.0253-2336.2021.12.mtkxjs202112026
ZHAO Yuan,JI Qing,WANG Teng. Current status and prospects of intelligent trackless auxiliary transportation technology in coal mines[J]. Coal Science and Technology,2021,49(12):209−216. doi: 10.3969/j.issn.0253-2336.2021.12.mtkxjs202112026
|
[4] |
杨坤. 矿井无轨胶轮车智能化管理系统研究[J]. 工矿自动化,2023,49(1):162−170.
YANG Kun. Research on the intelligent management system of the trackless rubber-tyred vehicles in the coal mine[J]. Journal of Mine Automation,2023,49(1):162−170.
|
[5] |
鲍久圣,章全利,葛世荣,等. 煤矿井下无人化辅助运输系统关键基础研究及应用实践[J]. 煤炭学报,2023,48(2):1085−1098.
BAO Jiusheng,ZHANG Quanli,GE Shirong,et al. Basic research and application practice of unmanned auxiliary transportation system in coal mine[J]. Journal of China Coal Society,2023,48(2):1085−1098.
|
[6] |
贾磊. 煤矿中无轨胶轮车的智能调度管理技术[J]. 现代工业经济和信息化,2022,12(3):142−143,159.
JIA Lei. Intelligent scheduling management technology for trackless rubber wheeled vehicles in coal mines[J]. Modern Industrial Economy and Informationization,2022,12(3):142−143,159.
|
[7] |
鲍文亮. 煤矿用无人驾驶辅助运输车辆的蒙特卡罗定位方法[J]. 煤炭科学技术,2021,49(11):211−217.
BAO Wenliang. Monte Carlo Localization for autonomous auxiliary transport vehicles used in coal mine[J]. Coal Science and Technology,2021,49(11):211−217.
|
[8] |
叶伟. 煤矿井下目标定位的研究现状与展望[J]. 中国矿业,2021,30(1):82−89,105. doi: 10.12075/j.issn.1004-4051.2021.01.030
YE Wei. Status and prospects of research on positioning of targets in underground coal mines[J]. China Mining Magazine,2021,30(1):82−89,105. doi: 10.12075/j.issn.1004-4051.2021.01.030
|
[9] |
SEGUEL F,PALACIOS-JÁTIVA P,AZURDIA-MEZA C A,et al. Underground mine positioning:A review[J]. IEEE Sensors Journal,2022,22(6):4755−4771. doi: 10.1109/JSEN.2021.3112547
|
[10] |
胡青松,张赫男,王鹏,等. 目标定位中的非视距传播研究综述[J]. 工矿自动化,2020,46(7):16−27.
HU Qingsong,ZHANG Henan,WANG Peng,et al. Non-line-of-sight propagation in object localization:A survey[J]. Industry and Mine Automation,2020,46(7):16−27.
|
[11] |
王浩然,王宏伟,李正龙,等. 基于捷联惯导与差速里程计的掘进机组合定位方法[J]. 工矿自动化,2022,48(9):148−156.
WANG Haoran,WANG Hongwei,LI Zhenglong,et al. Roadheader combined positioning method based on strapdown inertial navigation and differential odometer[J]. Journal of Mine Automation,2022,48(9):148−156.
|
[12] |
刘送永,崔玉明. 煤矿井下定位导航技术研究进展[J]. 矿业研究与开发,2019,39(7):114−120.
LIU Songyong,CUI Yuming. Research progress of positioning and navigation technology in underground coal mine[J]. Mining Research and Development,2019,39(7):114−120.
|
[13] |
牛小骥,王庭蔚,葛雯斐,等. 一种基于视觉二维码/惯性融合的室内高精度定位定姿方法[J]. 中国惯性技术学报,2023,31(11):1067−1075.
NIU Xiaoji,WANG Tingwei,GE Wenfei,et al. A high precision indoor positioning and attitude determination method based on visual two-dimensional code/inertial information[J]. Journal of Chinese Inertial Technology,2023,31(11):1067−1075.
|
[14] |
马宏伟,毛金根,毛清华,等. 基于惯导/全站仪组合的掘进机自主定位定向方法[J]. 煤炭科学技术,2022,50(8):189−195.
MA Hongwei,MAO Jingen,MAO Qinghua,et al. Automatic positioning and orientation method of roadheader based on combination of ins and digital total station[J]. Coal Science and Technology,2022,50(8):189−195.
|
[15] |
周李兵. 煤矿井下无轨胶轮车无人驾驶系统研究[J]. 工矿自动化,2022,48(6):36−48.
ZHOU Libing. Research on unmanned driving system of underground trackless rubber-tyred vehicle in coal mine[J]. Journal of Mine Automation,2022,48(6):36−48.
|
[16] |
贺海涛,廖志伟,郭卫. 煤矿井下无轨胶轮车无人驾驶技术研究与探索[J]. 煤炭科学技术,2022,50(S1):212−217.
HE Haitao,LIAO Zhiwei,GUO Wei. Research and exploration on driverless technology of trackless rubbertyred vehicle in coal mine[J]. Coal Science and Technology,2022,50(S1):212−217.
|
[17] |
郭梁,宋建成,宁振兵,等. 矿用单轨吊机车定位系统开发[J]. 煤矿机械,2021,42(9):177−179.
GUO Liang,SONG Jiancheng,NING Zhenbing,et al. Development of mine monorail crane locomotive positioning system[J]. Coal Mine Machinery,2021,42(9):177−179.
|
[18] |
LI M G,ZHU H,YOU S Z,et al. UWB-based localization system aided with inertial sensor for underground coal mine applications[J]. IEEE Sensors Journal,2020,20(12):6652−6669. doi: 10.1109/JSEN.2020.2976097
|
[19] |
HE K,MA X M. Research on avoidance obstacle strategy of coal underground inspection robot based on binocular vision[C]//2017 29th Chinese Control and Decision Conference (CCDC). Piscataway,NJ:IEEE,2017:6732−6737.
|
[20] |
杜京义,郭金宝,张渤. 井下无人驾驶列车惯性导航定位系统[J]. 工矿自动化,2018,44(9):5−9.
DU Jingyi,GUO Jinbao,ZHANG Bo. Inertial navigation and positioning system for underground driverless train[J]. Industry and Mine Automation,2018,44(9):5−9.
|
[21] |
杨洁,申亮亮,王新龙,等. RSINS/里程计容错组合导航方案设计与性能验证[J]. 航空兵器,2021,28(2):93−99.
YANG Jie,SHEN Liangliang,WANG Xinlong,et al. Design and performance verification of RSINS/odometer fault-tolerant integrated navigation scheme[J]. Aero Weaponry,2021,28(2):93−99.
|
[22] |
ULLAH I,ZAIDI B H,NISAR S,et al. An inertial and global positioning system based algorithm for ownship navigation[J]. International Journal of Sensor Networks,2021,37(4):209−218. doi: 10.1504/IJSNET.2021.119487
|