Advance Search
AN Dong,FAN Jinying,SONG Yimin,et al. Simulation and experimental study on the impact resistance performance of energy-absorbing hydraulic bracing columns[J]. Coal Science and Technology,2025,53(4):393−400. DOI: 10.12438/cst.2023-1921
Citation: AN Dong,FAN Jinying,SONG Yimin,et al. Simulation and experimental study on the impact resistance performance of energy-absorbing hydraulic bracing columns[J]. Coal Science and Technology,2025,53(4):393−400. DOI: 10.12438/cst.2023-1921

Simulation and experimental study on the impact resistance performance of energy-absorbing hydraulic bracing columns

More Information
  • Received Date: December 15, 2023
  • Available Online: April 09, 2025
  • Regarding the impact resistance performance of energy-absorbing hydraulic support, the impact loads simulation and experimental study were conducted from the perspective of the energy-absorbing hydraulic column performance. With reference to commonly used energy-absorbing column, the Finite Element (FE) and Smoothed Particle Hydrodynamics (SPH) method was employed to establish fluid-structure coupled, fluid large deformation model for the conventional hydraulic column and energy-absorbing column, enabling numerical simulations of the hydraulic column under impact loads. Impact tests were conducted on energy-absorbing hydraulic support column, to obtain displacement response of the cylinder, which were compared with numerical simulation results. Two types of hydraulic support columns were subjected to simulated impact loads using free-falling hammers of 4.5, 7 and 10.5 t, obtaining its dynamic response The impact resistance performance of energy-absorbing hydraulic support columns is discussed based on six principles of impact protection design. Compared to ordinary pillars, the displacement of the energy-absorbing columns under the impact decreased by 16%, 23%, and 30%, separately. The maximum yielding resistance of the energy-absorbing columns decreased by 15%, 21% and 12%. The maximum yielding velocity of the energy-absorbing device may reach 18.5 m/s and can be completely crushed within 13 m/s. Regarding yielding stiffness, it was found that the energy-absorbing columns exhibited elastic stiffness before and after deforming, while they exhibited plastic stiffness during the crushing. The natural frequency of the energy-absorbing columns during yielding process was 0, avoiding the risk of resonance between the columns and surrounding rock leading to rapid destruction. The energy-absorption capacity of the energy-absorbing device could reach 272 kJ, and the overall energy-absorption capacity of the energy-absorbing columns was 80% higher than that of ordinary columns. The process of deformation and impact resistance of energy absorbing hydraulic support columns was summarized from the four stages of impact response, the impact resistance performance was analyzed. The results showed that the maximum impact energy that the energy-absorbing columns could withstand was 2.3 times that of ordinary ones, and the allowable opening time of the pressure relief valve can be extended to twice that of ordinary hydraulic columns.

  • [1]
    窦林名,田鑫元,曹安业,等. 我国煤矿冲击地压防治现状与难题[J]. 煤炭学报,2022,47(1):152−171.

    DOU Linming,TIAN Xinyuan,CAO Anye,et al. Present situation and problems of coal mine rock burst prevention and control in China[J]. Journal of China Coal Society,2022,47(1):152−171.
    [2]
    潘一山,齐庆新,王爱文,等. 煤矿冲击地压巷道三级支护理论与技术[J]. 煤炭学报,2020,45(5):1585−1594.

    PAN Yishan,QI Qingxin,WANG Aiwen,et al. Theory and technology of three levels support in bump-prone roadway[J]. Journal of China Coal Society,2020,45(5):1585−1594.
    [3]
    杨巨文,唐治,何峰,等. 矿用扩径式吸能构件吸能防冲特性研究[J]. 振动与冲击,2015,34(8):134−138,143.

    YANG Juwen,TANG Zhi,HE Feng,et al. Energy absorption and anti-impact properties of mine diameter-expanding energy absorption components[J]. Journal of Vibration and Shock,2015,34(8):134−138,143.
    [4]
    国家煤矿安全监察局. 煤矿安全生产标准化管理体系基本要求及评分方法:试行[M]. 北京:应急管理出版社,2020.
    [5]
    潘一山,吕祥锋,李忠华. 吸能耦合支护模型在冲击地压巷道中应用研究[J]. 采矿与安全工程学报,2011,28(1):6−10. doi: 10.3969/j.issn.1673-3363.2011.01.002

    PAN Yishan,LYU Xiangfeng,LI Zhonghua. The model of energy-absorbing coupling support and its application in rock burst roadway[J]. Journal of Mining & Safety Engineering,2011,28(1):6−10. doi: 10.3969/j.issn.1673-3363.2011.01.002
    [6]
    安栋,陈征,宋义敏,等. 冲击地压矿井巷道吸能防冲液压支架防冲效果研究[J]. 煤炭科学技术,2022,50(11):12−19.

    AN Dong,CHEN Zheng,SONG Yimin,et al. Research on energy absorption characteristics and anti-bump effect of anti-bump hydraulic support in rockburst mine roadway[J]. Coal Science and Technology,2022,50(11):12−19.
    [7]
    高永新,谭淼,谢苗. 矿用缓冲吸能装置的优化与实验[J]. 煤炭学报,2020,45(9):3325−3332.

    GAO Yongxin,TAN Miao,XIE Miao. Improvement and experimental study of buffer energy absorption device for mine[J]. Journal of China Coal Society,2020,45(9):3325−3332.
    [8]
    马箫,潘一山,张建卓,等. 防冲支架的核心吸能构件设计与吸能性能研究[J]. 煤炭学报,2018,43(4):1171−1178.

    MA Xiao,PAN Yishan,ZHANG Jianzhuo,et al. Design and performance research on core energy absorption component of anti-impact support[J]. Journal of China Coal So-cie-ty,2018,43(4):1171−1178.
    [9]
    宋嘉祺. 冲击地压巷道支架防冲性能及优化设计[D]. 北京:北方工业大学,2020:50−63.

    SONG Jiaqi. Anti-scour performance and optimization design of support in rock burst roadway[D]. Beijing:North China Uni-versity of Technology,2020:50−63.
    [10]
    潘一山,肖永惠,李忠华,等. 冲击地压矿井巷道支护理论研究及应用[J]. 煤炭学报,2014,39(2):222−228.

    PAN Yishan,XIAO Yonghui,LI Zhonghua,et al. Study of tunnel support theory of rockburst in coal mine and its application[J]. Journal of China Coal Society,2014,39(2):222−228.
    [11]
    潘一山,肖永惠,李国臻. 巷道防冲液压支架研究及应用[J]. 煤炭学报,2020,45(1):90−99.

    PAN Yishan,XIAO Yonghui,LI Guozhen. Roadway hydraulic support for rockburst prevention in coal mine and its application[J]. Journal of China Coal Society,2020,45(1):90−99.
    [12]
    唐治,潘一山,朱小景,等. 自移式吸能防冲巷道超前支架设计与研究[J]. 煤炭学报,2016,41(4):1032−1037.

    TANG Zhi,PAN Yishan,ZHU Xiaojing,et al. Design and study of self-moving energy absorption and anti-impact roadway advanced support[J]. Journal of China Coal Society,2016,41(4):1032−1037.
    [13]
    刘欣科,赵忠辉,赵锐. 冲击载荷作用下液压支架立柱动态特性研究[J]. 煤炭科学技术,2012,40(12):66−70.

    LIU Xinke,ZHAO Zhonghui,ZHAO Rui. Study on dynamic features of leg applied to hydraulic powered support under bumping load[J]. Coal Science and Technology,2012,40(12):66−70.
    [14]
    赵忠辉,姜金球,王勇,等. 立柱在冲击动载荷作用下的动应力及冲击力分析[J]. 煤矿机械,2010,31(8):118−119. doi: 10.3969/j.issn.1003-0794.2010.08.051

    ZHAO Zhonghui,JIANG Jinqiu,WANG Yong,et al. Impacting dynamic stress and impacting force analysis of hydraulic column[J]. Coal Mine Machinery,2010,31(8):118−119. doi: 10.3969/j.issn.1003-0794.2010.08.051
    [15]
    安栋,陈征,宋嘉祺,等. 防冲吸能构件应变特性及巷道支架应用研究[J]. 中国安全生产科学技术,2022,18(12):73−79.

    AN Dong,CHEN Zheng,SONG Jiaqi,et al. Study on strain properties of energy-absorption burst-prevention component and its application in roadway support[J]. Journal of Safety Science and Technology,2022,18(12):73−79.
    [16]
    肖永惠,潘一山,陈建强,等. 巷道防冲支架吸能构件屈曲吸能可靠性研究[J]. 采矿与安全工程学报,2022,39(2):317−327.

    XIAO Yonghui,PAN Yishan,CHEN Jianqiang,et al. Buckling energy absorption reliability of energy absorption component of roadway rockburst preventing support[J]. Journal of Mining & Safety Engineering,2022,39(2):317−327.
    [17]
    许海亮,郭旭,宋义敏,等. 新型矿用组合折纹柱构件防冲吸能特性分析[J]. 煤炭科学技术,2023,51(3):225−232.

    XU Hailiang,GUO Xu,SONG Yimin,et al. Analysis on characteristics of anti-impact and energy absorption of new type of composite folding column used in mining[J]. Coal Science and Technology,2023,51(3):225−232.
    [18]
    石强, 潘一山, 李英杰. 我国冲击矿压典型案例及分析[J]. 煤矿开采,2005(2):13−17. doi: 10.3969/j.issn.1006-6225.2005.02.005

    SHI Qiang, PAN Yishan, LI Yingjie. The typical cases and analysis of rockburst in China[J]. Coal Mining Technology,2005(2):13−17. doi: 10.3969/j.issn.1006-6225.2005.02.005
    [19]
    康红普,王金华,林健. 煤矿巷道支护技术的研究与应用[J]. 煤炭学报,2010,35(11):1809−1814.

    KANG Hongpu,WANG Jinhua,LIN Jian. Study and applications of roadway support techniques for coal mines[J]. Journal of China Coal Society,2010,35(11):1809−1814.
    [20]
    潘一山. 煤矿冲击地压扰动响应失稳理论及应用[J]. 煤炭学报,2018,43(8):2091−2098.

    PAN Yishan. Disturbance response instability theory of rockburst in coal mine[J]. Journal of China Coal Society,2018,43(8):2091−2098.
    [21]
    国家质量监督检验检疫总局, 国家标准化管理委员会. 煤矿用液压支架 第1部分:通用技术条件: GB 25974.1—2010[S]. 北京: 中国标准出版社, 2011.
    [22]
    李文盛,赵友清,贾善坡,等. 储液容器内液体晃荡的非线性动力学分析[J]. 爆炸与冲击,2014,34(1):87−92. doi: 10.3969/j.issn.1001-1455.2014.01.015

    LI Wensheng,ZHAO Youqing,JIA Shanpo,et al. Numerical analysis on liquid sloshing in storage container by nonlinear dynamics method[J]. Explosion and Shock Waves,2014,34(1):87−92. doi: 10.3969/j.issn.1001-1455.2014.01.015
    [23]
    陈飞国,葛蔚. 多相流动的光滑粒子流体动力学方法研究综述[J]. 力学学报,2021,53(9):2357−2373. doi: 10.6052/0459-1879-21-270

    CHEN Feiguo,GE Wei. A review of smoothed particle hydrodynamics family methods for multiphase flow[J]. Chinese Journal of Theoretical and Applied Mechanics,2021,53(9):2357−2373. doi: 10.6052/0459-1879-21-270
    [24]
    孙晓艳,王军. SPH方法的理论及应用[J]. 水利水电技术,2007,38(3):44−46.

    SUN Xiaoyan,WANG Jun. Theories and application on smoothed particle hydrodynamics method[J]. Water Resources and Hydropower Engineering,2007,38(3):44−46.
    [25]
    赵志礼. 立柱和千斤顶冲击载荷的估算[J]. 矿山机械,2009,37(2):37−39.

    ZHAO Zhili. A calculation method for impact loads of the post and jack[J]. Mining & Processing Equipment,2009,37(2):37−39.
    [26]
    陈戈,秦东晨. 新国标液压支架立柱结构有限元分析研究[J]. 河南机电高等专科学校学报,2015,23(4):5−7.

    CHEN Ge,QIN Dongchen. The FEA analysis research of new national standard for hydraulic support leg structure[J]. Journal of Henan Mechanical and Electrical Engineering College,2015,23(4):5−7.
  • Related Articles

    [1]ZHANG Zhiyi, ZHAO Bo, GUAN Weiming, CHU Chunmei, QIAN Deyu. Numerical simulation of bearing capacity of aeolian sand-gabion[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(4): 220-232. DOI: 10.12438/cst.2024-0035
    [2]ZENG Qingliang, XU Penghui, MENG Zhaosheng, WAN Lirong. Dynamic response characteristics analysis of four column chock shield support under impact load[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(1): 437-445. DOI: 10.13199/j.cnki.cst.2022-0975
    [3]LI Zhonghua, SONG Zhe. Dynamic response analysis of coal rock system based on time varying principle[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(9): 40-47.
    [4]WU Bo, WEI Han, XU Shixiang, XU Jie, HUANG Zonghui. Numerical analysis of controlled blasting of elliptic bipolar linear shaped charge based on SPH[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(5).
    [5]HAO Yong YU Hong-fei LIU Zheng ZHOU Yongliang MU Xian-min, . Mechanics Calculation and Analysis on Middle Pan of Scraper Conveyor[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (11).
    [6]ZHANG Tie-yi ZHANG Hua-ming, . Analysis of Mining Dump Truck Rear Axle Housing Failure in Surface Mine[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (4).
    [7]WANG Lei FAN Shi-ping GONG Jjian-yu LI Jian-ping, . Finite Element Analysis of Antiknock Performance for KJYF- 96 /8 Refuge Chamber[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (3).
    [8]Finite Element Analysis on Fatigue Crack Expansion of Lifter in Valve Seat of Emulsion Pump[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (5).
    [9]Finite Element Analysis on Conical Pick and Holder During Non Relative Movement[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (1).

Catalog

    Article views (49) PDF downloads (44) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return