Citation: | ZHANG Mingxuan,WANG Pengfei,YANG Tao,et al. Effect of polycarboxylic acid superplasticizer on sulphoaluminate cement based grouting material[J]. Coal Science and Technology,2025,53(4):348−361. DOI: 10.12438/cst.2023-1918 |
With the increase of buried depth and mining strength, it is more and more difficult for ordinary Portland cement-based grouting reinforcement materials to meet the engineering requirements. Sulphoaluminate cement uses less energy than ordinary Portland cement, is more environmentally friendly, and is more in line with the concept of carbon peak/carbon neutral. However, its high price and fast setting limit its application in the field of grouting. Therefore, based on the reinforcement material of slag-desulfurization gypsum-sulfoaluminate cement terpolymer system, the macro and micro effects of different water-cement ratios and polycarboxylic acid water reducing agents on the material were studied, and the grouting performance was improved and optimized, and the optimized grouting reinforcement effect was verified through field engineering. The results show that: ① The mechanical strength of the material increases with the decrease of the water-cement ratio, and the maximum compressive strength at 28 d is 56.56 MPa; ② With the increase of polycarboxylic acid water reducer content, the setting time gradually extended, the fluidity gradually increased, and the compressive strength showed a trend of first increasing and then decreasing, with the maximum compressive strength of 75.09 MPa at 28 d; ③ According to the flower-time curve, the change of flowability with time can be divided into four stages: rapid stage (Ⅰ), slow stage, rapid stage (Ⅱ) and stable stage, and the best grouting period is in the slow stage; ④ The addition of polycarboxylic acid superplasticizer will delay the hydration process of cement, but at the same time will make the structure and morphology of the generated hydration products better; ⑤ Slag∶desulfurization gypsum∶thioaluminate cement optimal mix ratio (mass ratio) is 4∶1∶15, the addition of 0.3% water-reducing agent to improve the flow can meet the requirements of underground grouting, while having high strength, the best grouting period is the slow period (20−100 min) under the current ratio. ⑥ According to the screening ratio and method, guide the field grouting reinforcement project of the 4204 working surface of Hemay No.3 Mine, confirm that the process has a good grouting effect, can fully fill the cracks and effectively strengthen the surrounding rock, and the maximum deformation of the top and bottom plates and two sides is reduced from 432 mm and 324 mm before grouting to 233 mm and 153 mm after grouting. The deformation of surrounding rock is controlled effectively and has good economic benefits.
[1] |
谢和平,彭苏萍,何满潮. 深部煤炭开采诱发的工程灾害及今后的研究方向[C]//中国煤炭学会. 21世纪中国煤炭工业第五次全国会员代表大会暨学术研讨会论文集. 北京,2001:61−66.
|
[2] |
潘俊锋,夏永学,王书文,等. 我国深部冲击地压防控工程技术难题及发展方向[J]. 煤炭学报,2024,49(3):1291−1302.
PAN Junfeng,XIA Yongxue,WANG Shuwen,et al. Technical difficulties and emerging development directions of deep rock burst prevention in China[J]. Journal of China Coal Society,2024,49(3):1291−1302.
|
[3] |
袁亮,王恩元,马衍坤,等. 我国煤岩动力灾害研究进展及面临的科技难题[J]. 煤炭学报,2023,48(5):1825−1845.
YUAN Liang,WANG Enyuan,MA Yankun,et al. Research progress of coal and rock dynamic disasters and scientific and technological problems in China[J]. Journal of China Coal Society,2023,48(5):1825−1845.
|
[4] |
何满潮,武毅艺,高玉兵,等. 深部采矿岩石力学进展[J]. 煤炭学报,2024,49(1):75−99.
HE Manchao,WU Yiyi,GAO Yubing,et al. Research progress of rock mechanics in deep mining[J]. Journal of China Coal Society,2024,49(1):75−99.
|
[5] |
高明忠,宋杰,崔鹏飞,等. 深部煤层原位保压保瓦斯取心技术装备及初步应用[J]. 煤炭科学技术,2024,52(4):143−154. doi: 10.12438/cst.2024-0156
GAO Mingzhong,SONG Jie,CUI Pengfei,et al. Technology and application of in situ pressure and gas maintaining coring for deep coal seam[J]. Coal Science and Technology,2024,52(4):143−154. doi: 10.12438/cst.2024-0156
|
[6] |
秦长坤,赵武胜,贾海宾,等. 基于模态分解和深度学习的煤矿微震时序预测方法[J]. 煤炭学报,2024,49(9):3781−3797.
QIN Changkun,ZHAO Wusheng,JIA Haibin,et al. A method for predicting the time series of microseismic events in coal mines based on modal decomposition and deep learning[J]. Journal of China Coal Society,2024,49(9):3781−3797.
|
[7] |
王朋飞,常通,卢俊宇,等. 再论负煤柱巷顶沿空掘巷合理位置及其围岩主动控制原理[J]. 煤炭学报,2023,48(2):593−608.
WANG Pengfei,CHANG Tong,LU Junyu,et al. Re-discussion on reasonable position and support technology of entry driven under the gob edge of previous split-level longwall panel[J]. Journal of China Coal Society,2023,48(2):593−608.
|
[8] |
李路恒,杨新安,谢文兵,等. 千米深井沿空巷道合理煤柱宽度与支护技术研究[J]. 地下空间与工程学报,2024,20(1):219−229,250.
LI Luheng,YANG Xin’an,XIE Wenbing,et al. Study on reasonable coal pillar width and supporting technology of gob-side entry in kilometer deep mine[J]. Chinese Journal of Underground Space and Engineering,2024,20(1):219−229,250.
|
[9] |
肖同强,余子豪,李怀珍,等. 深部巷道围岩裂隙注浆加固浆液扩散规律研究[J]. 河南理工大学学报(自然科学版),2024,43(1):16−24.
XIAO Tongqiang,YU Zihao,LI Huaizhen,et al. Study on slurry diffusion law of grouting reinforcement for fractured surrounding rock in deep roadway[J]. Journal of Henan Polytechnic University (Natural Science),2024,43(1):16−24.
|
[10] |
王燕谋. 硫铝酸盐水泥[M]. 北京:北京工业大学出版社,1999.
|
[11] |
张洋洋,张群力,赵庆新,等. 硫铝酸盐水泥水化产物−铝凝胶的研究进展[J]. 材料导报,2024,38(14):126−134.
ZHANG Yangyang,ZHANG Qunli,ZHAO Qingxin,et al. Research progress on aluminum hydroxide gel in calcium sulfoaluminate cement[J]. Materials Reports,2024,38(14):126−134.
|
[12] |
刘猛,夏瑞杰,刘勇,等. 高贝利特硫铝酸盐水泥的矿物组成及其影响因素[J]. 材料科学与工程学报,2022,40(5):829−834.
LIU Meng,XIA Ruijie,LIU Yong,et al. Mineral composition of belite calcium sulfo-aluminate clinker and its influencing factors[J]. Journal of Materials Science and Engineering,2022,40(5):829−834.
|
[13] |
杨光,温子怡,张鑫,等. 硫铝酸盐水泥基套筒灌浆料强度性能试验研究[J]. 工程建设与设计,2024(7):180−182.
YANG Guang,WEN Ziyi,ZHANG Xin,et al. Experimental study on the strength performance of sulfoaluminate cement base sleeve grouting material[J]. Construction & Design for Engineering,2024(7):180−182.
|
[14] |
赵磊,王杰,孙勇,等. 复合缓凝剂改性硫铝酸盐水泥注浆材料性能试验研究[J]. 煤炭技术,2024,43(1):34−39.
ZHAO Lei,WANG Jie,SUN Yong,et al. Experimental study on properties of composite retarder modified sulphoaluminate cement grouting material[J]. Coal Technology,2024,43(1):34−39.
|
[15] |
李亚刚,廖宜顺,刘艳玲,等. 超细矿渣粉和偏高岭土对硫铝酸盐水泥水化和强度的影响[J]. 硅酸盐通报,2021,40(5):1586−1593,1609.
LI Yagang,LIAO Yishun,LIU Yanling,et al. Effects of ultrafine ground granulated blast furnace slag and metakaolin on hydration and strength of calcium sulfoaluminate cement[J]. Bulletin of the Chinese Ceramic Society,2021,40(5):1586−1593,1609.
|
[16] |
范昭昂,李秋义,郭远新,等. 矿粉与粉煤灰对高贝利特硫铝酸盐水泥水化和强度的影响[J]. 混凝土,2023(2):105−108,113. doi: 10.3969/j.issn.1002-3550.2023.02.022
FAN Zhaoang,LI Qiuyi,GUO Yuanxin,et al. Effect of mineral power and fly ash on hydration and strength of high-belite sulfoaluminate cement[J]. Concrete,2023(2):105−108,113. doi: 10.3969/j.issn.1002-3550.2023.02.022
|
[17] |
苏敦磊. 基于多种固废协同处置技术的高贝利特硫铝酸盐水泥制备与应用基础研究[D]. 青岛:青岛理工大学,2021.
SU Dunlei. Basic research on preparation and application of high-belite sulfoaluminate cement based on various solid waste collaborative disposal technologies [D]. Qingdao:Qingdao University of Technology,2021.
|
[18] |
武鑫江,齐东有,邹德麟,等. 硫铝酸盐水泥缓凝剂研究进展[J]. 中国水泥,2022(12):81−85.
WU Xinjiang, QI Dongyou, ZOU Delin, et al. Research progress of sulphoaluminate cement retarder[J]. China Cement,2022(12):81−85.
|
[19] |
唐芮枫,王子明,兰明章,等. 缓凝剂对高贝利特硫铝酸盐水泥水化和性能的影响[J]. 硅酸盐通报,2020,39(12):3763−3769.
TANG Ruifeng,WANG Ziming,LAN Mingzhang,et al. Effects of retarders on hydration and properties of high-belite calcium sulphoaluminate cement[J]. Bulletin of the Chinese Ceramic Society,2020,39(12):3763−3769.
|
[20] |
廖宜顺, 王思纯, 廖国胜, 等. 葡萄糖酸钠对硫铝酸盐水泥水化历程的影响[J]. 材料导报,2023,37(9):131−136.
LIAO Yishun, WANG Sichun, LIAO Guosheng, et al. Effect of sodium gluconate on hydration process of calcium sulfoaluminate cement[J]. Materials Reports,2023,37(9):131−136.
|
[21] |
王洪镇,沈昊,曹万智,等. 硼酸对硫铝酸盐基复合胶凝材料性能的影响[J]. 硅酸盐通报,2023,42(4):1166−1173. doi: 10.3969/j.issn.1001-1625.2023.4.gsytb202304004
WANG Hongzhen,SHEN Hao,CAO Wanzhi,et al. Effect of boric acid on properties of sulphoaluminate based composite cementitious materials[J]. Bulletin of the Chinese Ceramic Society,2023,42(4):1166−1173. doi: 10.3969/j.issn.1001-1625.2023.4.gsytb202304004
|
[22] |
刘从振,范英儒,王磊,等. 聚羧酸减水剂对硫铝酸盐水泥水化及硬化的影响[J]. 材料导报,2019,33(4):625−629. doi: 10.11896/cldb.201904011
LIU Congzhen,FAN Yingru,WANG Lei,et al. Hydration and hardening of sulphoaluminate cement paste under the influence of polycarboxylate superplasticizer[J]. Materials Reports,2019,33(4):625−629. doi: 10.11896/cldb.201904011
|
[23] |
张鸣,张德成,吴波,等. 外加剂与硫铝酸盐水泥相容性研究[J]. 济南大学学报(自然科学版),2006,20(2):125−129. doi: 10.3969/j.issn.1671-3559.2006.02.009
ZHANG Ming,ZHANG Decheng,WU Bo,et al. Compatibility of superplasticizers with sulphoaluminate cement[J]. Journal of University of Jinan (Science and Technology),2006,20(2):125−129. doi: 10.3969/j.issn.1671-3559.2006.02.009
|
[24] |
毛海涛,马浩森,严思文,等. 减水剂对硫铝酸盐水泥早期水化影响[J]. 硅酸盐通报,2017,36(12):4163−4168.
MAO Haitao,MA Haosen,YAN Siwen,et al. Effect of water reducing agent on early hydration of sulphoaluminate cement[J]. Bulletin of the Chinese Ceramic Society,2017,36(12):4163−4168.
|
[25] |
陈娟,胡晓曼,李北星. 几种外加剂对硫铝酸盐水泥性能的影响[J]. 水泥工程,2005(3):13−15. doi: 10.3969/j.issn.1007-0389.2005.03.004
CHEN Juan,HU Xiaoman,LI Beixing. Influence of several kinds of admixtures on the properties of sulphoaluminate cement[J]. Cement Engineering,2005(3):13−15. doi: 10.3969/j.issn.1007-0389.2005.03.004
|
[26] |
ZHANG J W,WANG X,JIN B,et al. Effect of superplasticizers on hydration kinetics of ultrafine sulfoaluminate cement-based grouting material[J]. Thermochimica Acta,2021,703:178988. doi: 10.1016/j.tca.2021.178988
|
[27] |
左永强. 硫铝酸盐水泥超早强外加剂的制备及其应用研究[D]. 长沙:湖南大学,2010.
ZUO Yongqiang. Investigation on preparation and applications for a super early strength admixture of sulphoaluminate cement [D]. Changsha:Hunan University,2010.
|
[28] |
高勇. 道路非开挖注浆加固技术研究综述[J]. 佛山科学技术学院学报(自然科学版),2021,39(1):13−19.
GAO Yong. Review of trenchless grouting technology for road reinforcement[J]. Journal of Foshan University (Natural Science Edition),2021,39(1):13−19.
|
[29] |
杜野,裴向军,黄润秋,等. 黏度时变性注浆材料流动特性与应用研究[J]. 岩土力学,2017,38(12):3498−3504.
DU Ye,PEI Xiangjun,HUANG Runqiu,et al. Study on flow characteristics and application of viscosity time-varying grouting material[J]. Rock and Soil Mechanics,2017,38(12):3498−3504.
|
[30] |
白龙剑. 聚氨酯增韧硫铝酸盐水泥基注浆材料试验与应用研究[D]. 太原:太原理工大学,2020.
BAI Longjian. Experiment and application study of polyurethane sulphoaluminate cement-based grouting materials [D]. Taiyuan:Taiyuan University of Technology,2020.
|
[31] |
孔爱散,周长顺. 减缩剂在水泥基材料中的应用研究进展(Ⅱ):体积稳定性[J]. 混凝土,2020(6):79−84,89. doi: 10.3969/j.issn.1002-3550.2020.06.018
KONG Aisan,ZHOU Changshun. Research progress of application of shrinkage-reducing admixture in cement-based materials (Ⅱ):Volume stability[J]. Concrete,2020(6):79−84,89. doi: 10.3969/j.issn.1002-3550.2020.06.018
|
[32] |
张占强,李顺凯,陈平,等. 高活性氧化镁膨胀剂对UHPC性能的影响[J]. 功能材料,2023,54(4):4189−4195. doi: 10.3969/j.issn.1001-9731.2023.04.025
ZHANG Zhanqiang,LI Shunkai,CHEN Ping,et al. Effects of highly active MgO expansive agent on the performance of UHPC[J]. Journal of Functional Materials,2023,54(4):4189−4195. doi: 10.3969/j.issn.1001-9731.2023.04.025
|
[33] |
王志强,苏越,苏泽华,等. 区段间相邻巷道锚杆-锚索联合支护协调作用机理研究[J]. 采矿与安全工程学报,2020,37(6):1152−1161.
WANG Zhiqiang,SU Yue,SU Zehua,et al. Coordination mechanism of bolt-cable combined support between adjacent roadway sections[J]. Journal of Mining & Safety Engineering,2020,37(6):1152−1161.
|
[1] | AN Baifu, YI Qiaomei, ZHAO Xiang, YU Weijian, WANG Dongda, WANG Jiale. Experimental research on low and strength characteristics of coal slime based cemented filling material[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(S1): 13-21. DOI: 10.13199/j.cnki.cst.2022-1733 |
[2] | LI Xijian XUE Haiteng CHEN Liuyu SHEN Zhonghui XU Mingzhi XU Shiqing, . Micropore structure of outburst coal seam in Guizhou Area and its effect on gas flow[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(10). |
[3] | ZHAO Junmei, RONG Lingkun, LU Cai, BAI Chunhua, WANG Li. Study on dispersion mechanism of polycarboxylatesuperplasticizer in low rank coal water slurry[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (4). |
[4] | Yang Mingshun Xie Qiang Kang Shanjiao Liu Weibing LiuXin Qi Yongli Mei Changsong Li Chunqi, . Polycarboxylate dispersant of coal water mixture prepared based on lignite hydrothermal waste water[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (9). |
[5] | Qi Wei. Development and Application on MJS-1 Coking Coal Giesler Fluidity Testing Machine with Double Furnace[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (7). |
[6] | QU Qian-qian ZHANG Guang- hua ZHU Jun-feng WEI Ying-fei, . Study on Performances and Synthesis of Polyether Polycarboxylate Dispersant for Coal Water Slurry[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (2). |
[7] | MENG Xian-liang WANG Hong-lin WU Guo-guang MIAO Zhen-yong CHU Rui-zhi LIU Ya-fei WANG Jing WANG Yan-li ZHANG Zhong-cai, . Study on Polycarboxylate Series Dispersant of Coal Water Slurry Affected to Slurry Ability of High Ash Slime[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (10). |
[8] | Study on Effective Drainage Radius of Advance Borehole Based on Gas Flow Theory[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (2). |
[9] | Synthesis and Research on Citric Acid Polycarboxylic Dispersant of Coal Water Slurry[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (9). |