Advance Search
ZHU Tao,WU Xinjuan,XING Cheng,et al. Current situation and progress of coal gangue resource utilization[J]. Coal Science and Technology,2024,52(1):380−390. DOI: 10.12438/cst.2023-1917
Citation: ZHU Tao,WU Xinjuan,XING Cheng,et al. Current situation and progress of coal gangue resource utilization[J]. Coal Science and Technology,2024,52(1):380−390. DOI: 10.12438/cst.2023-1917

Current situation and progress of coal gangue resource utilization

Funds: 

National Key Research and Development Program of China (2023YFC3905503); Open Fund Funding Project of the State Key Laboratory of Malodorous Pollution Control and Environmental Protection (20230804); Open Topic Funding Project of Henan Key Laboratory of Gas Geology and Gas Control (WS2022B10)

More Information
  • Received Date: December 14, 2023
  • Available Online: January 25, 2024
  • Against the backdrop of achieving the goals of “peak carbon emissions and carbon neutrality”, coal, as the cornerstone of national energy security, plays a crucial role in the green development of our country’s economic construction and social development. However, during the process of coal mining and washing, coal gangue, as the primary associated by-product of coal, has become the foremost bulk solid waste that urgently needs to be addressed in our country. Currently, the comprehensive utilization rate of coal gangue remains at a relatively low level, and a standardized and feasible research system has yet to be established. Therefore, addressing the water, atmospheric, and soil environmental pollution caused by coal mining and coal gangue accumulation, this paper summarizes the relevant research progress on the resource utilization of coal gangue in the production of energy, recovery of valuable metals, production of building materials, and other directions, and also discusses the application of coal gangue in preventing heavy metal pollution, soil remediation, and erosion control. Finally, it proposes the future development direction of coal gangue resource utilization, planning and integrating resources as a whole, not only for conventional purposes but also for the production of high-value-added products. By combining the two, comprehensive and resourceful utilization of coal gangue can be achieved, providing a reference for its “reduction, resource utilization, and recycling” development. In conclusion, the resource utilization of coal gangue is an important direction for the transformation and upgrading of China’s coal industry, and it is also the necessary path to achieve green and sustainable development. Only through unremitting efforts and continuous innovation can we better address the problem of coal gangue accumulation, promote the more efficient, environmentally friendly, and sustainable development of coal gangue resource utilization, and make a greater contribution to the sustainable development of our country’s economy and society.

  • [1]
    朱 琦. 硫酸盐还原菌与杀菌剂协同抑制煤矸石酸化研究[D]. 北京:中国矿业大学(北京),2021.

    ZHU Qi. Research on synergistic inhibition of acidification of coal gangue by sulfate reducing bacteria and fungicides[D]. Beijing:China University of Mining and Technology−Beijing,2021.
    [2]
    杨振华. 煤矿开采固体废弃物对环境的损坏及治理方法[J]. 山西化工,2023,43(2):220−221.

    YANG Zhenhua. Environmental damage and treatment methods of solid waste from coal mining[J]. Shanxi Chemical Industry,2023,43(2):220−221.
    [3]
    WANG H,FANG X,DU F,et al. Three-dimensional distribution and oxidation degree analysis of coal gangue dump fire area:A case study[J]. Science of the Total Environment,2021,772(3):145606.
    [4]
    范晓平,刘 京,康 哲,等. 煤矸石综合利用与矿山生态修复的战略思考[J]. 环境卫生工程,2023,31(1):8−15.

    FAN Xiaoping,LIU Jing,KANG Zhe,et al. Strategic thinking on comprehensive utilization of coal gangue and ecological restoration of mine[J]. Environmental Health Engineering,2023,31(1):8−15.
    [5]
    邓颖兰,魏恺颉,赵迪斐,等. 我国煤矸石固体废弃物在建筑与环境修复领域的资源化利用[J]. 能源研究与利用,2021(5):33−36. doi: 10.3969/j.issn.1001-5523.2021.06.007

    DENG Yinglan,WEI Kaijie,ZHAO Difei,et al. Utilization of coal gangue solid waste in construction and environmental restoration[J]. Energy Research and Utilization,2021(5):33−36. doi: 10.3969/j.issn.1001-5523.2021.06.007
    [6]
    周 娜. 矿山固体废弃物的综合利用与环保治理[J]. 世界有色金属,2022(13):127−129. doi: 10.3969/j.issn.1002-5065.2022.11.043

    ZHOU Na. Comprehensive utilization and environmental protection of mine solid waste[J]. World Nonferrous Metals,2022(13):127−129. doi: 10.3969/j.issn.1002-5065.2022.11.043
    [7]
    蔚美娇,孔祥云,黄劲松,等. 我国尾矿固废处置现状及建议[J]. 化工矿物与加工,2022,51(3):34−38.

    WEI Meijiao,KONG Xiangyun,HUANG Jinsong,et al. Status and suggestions on the disposal of tailings solid waste in China[J]. Chemical Minerals and Processing,2022,51(3):34−38.
    [8]
    李菂萍,王好斌,许秀成,等. 含有丰富中微量元素的矿物肥料在复合肥生产中的应用[J]. 化肥工业,2016,43(3):91-94.

    LI Diping,WANG Haobin,XU Xiucheng,et al. Application of mineral fertilizer with rich medium and trace elements in the production of compound fertilizer[J]. Chemical Fertilizer Industry,2016,43(3):91-94.
    [9]
    尹津航. 长春羊草沟煤矿矿山环境地质问题研究[D]. 长春:吉林大学,2013.

    YIN Jinhang. Research on environmental geology of Yangcaogou Coal Mine in Changchun[D]. Changchun:Jilin University,2013.
    [10]
    龙文江. 添加剂对磷尾矿充填体有害离子无害化及机理研究[D]. 贵阳:贵州大学,2020.

    LONG Wenjiang. Research on harmlessness and mechanism of additives on harmful ions of phosphorus tailings backfill[D]. Guiyang:Guizhou University,2020.
    [11]
    王小芳. 铜陵硫化物尾矿砂氧化的硫形态和次生矿物变化效应[D]. 合肥:安徽大学,2019.

    WANG Xiaofang. Sulfur morphology and secondary mineral change effect of oxidation of sulfide tailings in Tongling[D]. Hefei:Anhui University,2019.
    [12]
    孙善济,高 午. 贵州省煤矿开采引发的地质灾害特征及致灾模式研究[J]. 中国煤炭地质,2013,25(6):51−53,61.

    SUN Shanji,GAO Wu. Study on characteristics and disaster modes of geological disasters caused by coal mining in Guizhou Province[J]. Coal Geology of China,2013,25(6):51−53,61.
    [13]
    刘建功,李新旺,何 团. 我国煤矿充填开采应用现状与发展[J]. 煤炭学报,2020,45(1):141-150.

    LIU Jiangong,LI Xinwang,HE Tuan. Application status and development of filling mining in coal mine in China[J]. Journal of China Coal Society,2020,45(1):141-150.
    [14]
    王 波,蔡承刚,汤志刚,等. 石膏矿采空区地面塌陷特征的离散元模拟[J]. 矿业研究与开发,2021,41(7):71-78.

    WANG Bo,CAI Chenggang,TANG Zhigang,et al. Discrete element simulation of ground collapse characteristics in goaf of gypsum mine[J]. Mining Research and Development,2021,41(7):71-78.
    [15]
    林德洪,曾晓林,刘汉武. 贵州省鬃岭煤矿区生态环境问题与修复措施研究[J]. 中州煤炭,2021,43(9):77−82.

    LIN Dehong,ZENG Xiaolin,LIU Hanwu. Study on ecological environment problems and restoration measures in Ziling Coal Mine area,Guizhou Province[J]. Zhongzhou Coal,2021,43(9):77−82.
    [16]
    陈孝杨,王 芳,王长垒,等. 砂姜黑土区采煤塌陷坡耕地水蚀输沙过程研究[J]. 水土保持学报,2015,29(1):32-35.

    CHEN Xiaoyang,WANG Fang,WANG Changlei,et al. Study on water erosion and sediment transport process of coal mining subsidence slope land in Shajiang black soil area[J]. Journal of Soil and Water Conservation,2015,29(1):32-35.
    [17]
    何荣兴,许雁超. 非煤矿山固体废弃物综合利用存在问题及应对措施[J]. 当代化工研究,2023(1):88−90.

    HE Rongxing,XU Yanchao. Problems in comprehensive utilization of solid waste in non-coal mines and countermeasures[J]. Contemporary Chemical Industry Research,2023(1):88−90.
    [18]
    王玉涛. 煤矸石固废无害化处置与资源化综合利用现状与展望[J]. 煤田地质与勘探,2022,50(10):54−66.

    WANG Yutao. Status and prospect of harmless disposal and comprehensive utilization of coal gangue solid waste[J]. Coal Geology and Exploration,2022,50(10):54−66.
    [19]
    冯来宏,陈良发,李义朝,等. 双碳背景下我国煤矸石资源化利用现状与进展[J/OL]. 矿产综合利用,1−14 [2023-11-04]. http://kns.cnki.net/kcms/detail/51.1251.TD.20231120.1215.010.html.

    FENG Laihong,CHEN Liangfa,LI Yichao,et al. Status and progress of resource utilization of coal gangue in China under dual-carbon background[J/OL]. Comprehensive Utilization of mineral Resources, 1−14 [2023-11-04]. http://kns.cnki.net/kcms/detail/51.1251.TD.20231120.1215.010.html.
    [20]
    李 强,王成行,胡 真,等. 磁选-重选-浮选强化回收微细粒铬铁矿新工艺研究[J]. 稀有金属,2021,45(11):1359−1367.

    LI Qiang,WANG Chengxing,HU Zhen,et al. Study on a new process for enhanced recovery of fine chromite by magnetic separation-gravity separation-flotation[J]. Rare Metals,2021,45(11):1359−1367.
    [21]
    李 科,杜红伟,包中华. 一种在煤矸石中提取有价金属元素的方法[P]. 中国:ZL202110297474.7. 2023-08-01.
    [22]
    张雨涵,赵雪淞,李婷婷,等. 基于响应面法的煤矸石氯化焙烧除铁工艺参数优化[J]. 煤炭转化,2024,47(1):81−90.

    ZHANG Yuhan,ZHAO Xuesong,LI Tingting,et al. Optimization of iron removal process parameters of coal gangue chlorination roasting based on response surface method[J]. Coal Conversion,2024,47(1):81−90.
    [23]
    陈延信,姚艳飞,酒少武,等. 分散态磁化焙烧:磁选回收某金尾矿中的铁[J]. 金属矿山,2012(2):63−66.

    CHEN Yanxin,YAO Yanfei,JIU Shaowu,et al. Recovery of iron from gold tailings by dispersed magnetization roasting and magnetic separation[J]. Metal Mine,2012(2):63−66.
    [24]
    闫 姝,杨金龙,王 璐,等. 煤矸石空心微珠/泡沫铝硅酸盐聚合物复合材料及制备[P]. 中国:ZL108585935B,2020-08-21.
    [25]
    于乐乐,王爱国,仲小凡,等. 煤矸石骨料混凝土力学和耐久性能研究进展[J/OL]. 材料导报,1−19 [2023-11-20]. http://kns.cnki.net/kcms/detail/50.1078.TB.20231227.1740.010.html.

    YU Lele,WANG Aiguo,ZHONG Xiaofan,et al. Research progress on mechanical and durability properties of gangue aggregate concrete [J/OL]. Materials Herald,1−19 [2023-11-20]. http://kns.cnki.net/kcms/detail/50.1078.TB.20231227.1740.010.html.
    [26]
    郝贠洪,王韫辉,李 京,等. 利用煤矸石、铁尾矿制备固废烧结砖[J/OL]. 矿产综合利用,1−10 [2023-11-20]. http://kns.cnki.net/kcms/detail/51.1251.TD.20231113.1037.006.html.

    HAO Yunhong,WANG Yunhui,LI Jing,et al. Preparation of solid waste sintered brick from coal gangue and iron tailings[J/OL]. Comprehensive Utilization of Mineral Resources, 1−10 [2023-11-20]. http://kns.cnki.net/kcms/detail/51.1251.TD.20231113.1037.006.html.
    [27]
    刘永强,张 鹏. 葫芦素煤矿煤矸石充填材料压实特性试验研究[J]. 陕西煤炭,2023,42(6):53−57.

    LIU Yongqiang,ZHANG Peng. Experimental study on compaction characteristics of coal gangue filling materials in cucurbit Coal Mine[J]. Shaanxi Coal,2019,42(6):53−57.
    [28]
    白国良,刘瀚卿,刘 辉,等. 煤矸石理化特性与煤矸石混凝土力学性能研究[J]. 建筑结构学报,2023,44(10):243−254.

    BAI Guoliang,LIU Hanqing,LIU Hui,et al. Study on the physicochemical properties of coal gangue and the mechanical properties of coal gangue concrete[J]. Journal of Building Structures,2023,44(10):243−254.
    [29]
    徐培杰,朱毅菲,曹永丹,等. 煤矸石资源高值化利用研究进展[J]. 环境工程学报,2023,17(10):3137−3147.

    XU Peijie,ZHU Yifei,CAO Yongdan,et al. Research progress on high-value utilization of coal gangue resources[J]. Journal of Environmental Engineering,2023,17(10):3137−3147.
    [30]
    郝贠洪,王韫辉,李 京,等. 利用煤矸石、铁尾矿制备固废烧结砖[J/OL]. 矿产综合利用,1−10 [2023-11-20]. http://kns.cnki.net/kcms/detail/51.1251.TD.20231113.1037.006.html.

    HAO Yunhong,WANG Yunhui,LI Jing,et al. Preparation of solid waste sintered brick from coal gangue and iron tailings[J/OL]. Comprehensive Utilization of Mineral Resources,1−10 [2023-11-20]. http://kns.cnki.net/kcms/detail/51.1251.TD.20231113.1037.006.html.
    [31]
    吴航. 氢氧化钠激发煤矸石混合料路用性能研究[D]. 邯郸:河北工程大学,2022.

    WU Hang. Study on road performance of coal gangue mixture excited by sodium hydroxide[D]. Handan:Hebei University of Engineering,2022.
    [32]
    PENG K,LYU C,YANG H. Novel preparation of glass ceramics from amorphized tungsten tailings[J]. Ceramics International,2014,40(7):10291−10296. doi: 10.1016/j.ceramint.2014.02.121
    [33]
    PENG K,YANG H,OUYANG J. Tungsten tailing powders activated for use as cementitious material[J]. Powder Technology,2015,286:678−683. doi: 10.1016/j.powtec.2015.09.012
    [34]
    朱 磊,古文哲,宋天奇,等. 煤基固废矿化封存CO2技术研究进展[J/OL]. 煤炭科学技术, 1−21 [2023-11-29]. http://kns.cnki.net/kcms/detail/11.2402.TD.20231110.1748.002.html.

    ZHU Lei,GU Wenzhe,SONG Tianqi,et al. Research progress on CO2 technology of coal-based solid waste mineralization and storage[J/OL]. Coal Science and Technology, 1−21 [2023-11-29]. http://kns.cnki.net/kcms/detail/11.2402.TD.20231110.1748.002.html.
    [35]
    吴 含. 全工业固废制备硫铝酸盐基3D打印胶凝材料[D]. 济南:山东大学,2020.

    WU Han. Preparation of sulphoaluminate based 3D printing cementing material from whole industrial solid waste[D]. Jinan:Shandong University,2020.
    [36]
    向 艳,侯 艳,周建民,等. 对改性煤矸石进行废水预处理应用的分析[J]. 皮革制作与环保科技,2023,4(19):123−125,128.

    XIANG Yan,HOU Yan,ZHOU Jianmin,et al. Analysis on the application of modified coal gangue in wastewater pretreatment [J].Leather Production and Environmental Protection Technology,2023,4(19):123−125,128.
    [37]
    吉 培. 改性煤矸石吸附剂吸附工业废水氨氮、COD的实验研究[J]. 山西化工,2023,43(9):213−215.

    JI Pei. Experimental study on adsorption of ammonia nitrogen and COD in industrial wastewater by modified coal gangue adsorbent[J]. Shanxi Chemical Industry,2019,43(9):213−215.
    [38]
    蒋斌斌,王 淳,赵白航,等. 煤矸石对矿井水中溶解性有机物动态吸附去除性能[J]. 给水排水,2023,59(10):68−73.

    JIANG Binbin,WANG Chun,ZHAO Baihang,et al. Dynamic adsorption and removal of dissolved organic matter from mine water by coal gangue[J]. Water Supply and Drainage,2023,59(10):68−73.
    [39]
    张博超,张洲朋,赵文豪,等. 利用煤矸石合成沸石分子筛的应用进展[J]. 煤炭技术,2023,42(11):252−255.

    ZHANG Bochao,ZHANG Zhoupeng,ZHAO Wenhao,et al. Progress in the synthesis of zeolite zeolites from coal gangue[J]. Coal Technology,2019,42(11):252−255.
    [40]
    晋晓彤. 煤矸石和粉煤灰制备分子筛的研究[D]. 武汉:武汉工程大学,2016.

    JIN Xiaotong. Study on preparation of molecular sieve from coal gangue and fly ash[D]. Wuhan:Wuhan Institute of Technology,2016.
    [41]
    KUJAWSKA J,PAWOWSKA M,WOJCIK K,et al. Application of exploratory waste and compost from municipal waste for the production of soil-like materials for reclamation of degraded areas[J]. Rocznik Ochrona Srodowiska,2016,18(2):709−721.
    [42]
    DU T,WANG D,BAI Y,et al. Optimizing the formulation of coal gangue planting substrate using wastes:The sustainability of coal mine ecological restoration[J]. Ecological Engineering,2020,143:105669−105669. doi: 10.1016/j.ecoleng.2019.105669
    [43]
    胡振琪,肖 武,赵艳玲. 再论煤矿区生态环境“边采边复”[J]. 煤炭学报,2020,45(1):351-359.

    HU Zhenqi,XIAO Wu,ZHAO Yanling. Discussion on ecological environment of coal mine area “recovery while mining”[J]. Journal of China Coal Society,2020,45(1):351-359.
    [44]
    杨长钰,刘兰靖,尚中博,等. 巯基丙基三甲氧基硅烷改性煤矸石修复钴污染土壤的性能[J]. 化学研究,2020,31(5):400−404.

    YANG Changyu,LIU Lanjing,SHANG Zhongbo,et al. The remediation of cobalt-contaminated soil using coal gangue modified by mercaptopropyltrimethoxysilane[J]. Chemical Research,2020,31(5):400−404.
    [45]
    赵满满,徐秀月,王宁宁,等. 秸秆与粉煤灰联合对煤矸石污染土壤中黑麦草富集重金属的影响[J/OL]. 环境工程,1−9[2023-11-29]. http://kns.cnki.net/kcms/detail/11.2097.X.20231120.1833.002.html.

    ZHAO Manman,XU Xiuyue,WANG Ningning,et al. The effect of straw and fly ash on the enrichment of heavy metals in ryegrass in coal gangue contaminated soil[J]. Environmental Engineering,1−9 [2023-11-29]. http://kns.cnki.net/kcms/detail/11.2097.X.20231120.1833.002.html.
    [46]
    刘柏君,姚素玲,董宪姝,等. 氨基修饰的煤矸石的制备及其对Pb(Ⅱ)的吸附研究[J/OL]. 矿产综合利用,1−14[2023-11-29]. http://kns.cnki.net/kcms/detail/51.1251.TD.20231116.0919.004.html.

    LIU Bojun,YAO Suling,DONG Xianshu,et al. Preparation of amino modified coal gangue and Its adsorption of Pb(II) [J]. Multipurpose Utilization of Mineral Resources, 1−14[2023-11-20]. http://kns.cnki.net/kcms/detail/51.1251.TD.20231116.0919.004.html.
    [47]
    尚中博. 巯基煤矸石的制备及其对土壤中重金属钝化效果和稳定性研究[D]. 郑州:河南大学,2019.

    SHANG Zhongbo. Preparation of sulfhydryl coal gangue and its passivation effect and stability on heavy metals in soil[D]. Zhengzhou:Henan University,2019.
    [48]
    INOUE N,HAMANAKA A,SHIMADA H,et al. Fundamental study on application of fly ash as topsoil substitute for the reclamation of mined land in Indonesian open cut coal mine[C]//The Beijing International Symposium Land Reclamation and Ecological Restoration(LRER 2014),2014.
    [49]
    WILSON K,EMERSON P,DELONG C,et al. Hardwood tree growth after eight years on brown and gray mine soils in west virginia[J]. Journal of Environmental Quality,2013,42(5):1353−1362. doi: 10.2134/jeq2013.04.0113
    [50]
    SENA K,BARTON C,HALL S,et al. Influence of spoil type on afforestation success and natural vegetative recolonization on a surface coal mine in Appalachia,United States[J]. Restoration Ecology,2015,23(2):1−8.
    [51]
    CARABASSA V,SERRA E,ORTIZ O,et al. Sewage sludge application protocol for quarry restoration (Catalonia)[J]. Ecological Restoration,2010,28(4):420−422. doi: 10.3368/er.28.4.420
    [52]
    荣 颖,胡振琪,杜玉玺,等. 露天矿区土壤基质改良材料研究进展[J]. 金属矿山,2018(2):164−171.

    RONG Ying,HU Zhenqi,DU Yuxi,et al. Research progress on soil matrix improvement materials in open-pit mining areas[J]. Metal Mines,2018(2):164−171.
    [53]
    李 侠,邵 洋,王润梅,等. 不同恢复方式煤矸石山植物群落差异及影响因子[J]. 土壤通报,2018,49(6):1370−1376.

    LI Xia,SHAO Yang,WANG Runmei,et al. Differences and influencing factors of plant communities in coal gangue mountains with different restoration methods[J]. Chinese Journal of Soil Science,2018,49(6):1370−1376.
    [54]
    张汝翀,王冬梅,张 英,等. 煤矸石绿化基质对白三叶草生长及其抵御重金属污染的影响[J]. 应用与环境生物学报,2018,24(4):908−914.

    ZHANG Ruchong,WANG Dongmei,ZHANG Ying,et al. Effects of coal gangue greening substrate on the growth of white clover and its resistance to heavy metal pollution[J]. Chinese Journal of Applied & Environmental Biology,2018,24(4):908−914.
    [55]
    郁 山. 基于固体废弃物的人工土壤对黑麦草生长的研究[D]. 扬州:扬州大学,2022.

    YU Shan. Based on the solid wastes of artificial soil study of perennial ryegrass growth[D]. Yangzhou:Yangzhou University,2022.
    [56]
    ASENSIO V,VEGA F A,LAGOAS,et al. Technosols made of wastes to improve physico-chemical characteristics of a copper mine soil[J]. Pedosphere,2013,23(1):1-9
    [57]
    陈贵屏. 利用固体废弃物制备人工土壤的可行性研究[D]. 扬州:扬州大学,2016.

    CHEN Guiping. Feasibility study on the preparation of artificial soil solid waste using[D]. Yangzhou:Yangzhou University,2016.
    [58]
    LIAN L,JIAN F Z,HUI M J,et al. Effects of non-hazardous sewage sludge application on soil organic matter and soil microbial biomass carbon and nitrogen[J]. Journal of Agro-Environment Science,2014,33(5):978−984.
    [59]
    张思兰,张 春,陈科平,等. 生活污泥发酵产物对水基钻屑土壤化利用的影响[J]. 安全与环境学报,2020,20(3):1061−1069.

    ZHANG Silan,ZHANG Chun,CHEN Keping,et al. Impact of municipal fermented sludge on water-based drilling cuttings land application[J]. Journal of Safety and Environment,2020,20(3):1061−1069.
    [60]
    杜 韬,王冬梅,张泽洲,等. 煤矸石植生基质保水性能对黑麦草生长的影响[J]. 中国水土保持科学,2019,17(4):75−84.

    DU Tao,WANG Dongmei,ZHANG Zezhou,et al. Effect of the water-retaining property of coal gangue planting substrate on the growth of Lolium perenne[J]. Science of Soil and Water Conservation,2019,17(4):75−84.
    [61]
    BEIBEI Z,MING A S,MINGXIA W,et al. Effects of coal gangue content on water movement and solute transport in a China loess plateau soil[J]. Clean,2010,38(11):1031−1038.
    [62]
    李禹凝,王金满,张雅馥,等. 干旱半干旱煤矿区土壤水分研究进展[J]. 土壤,2023,55(3):494−502.

    LI Yuning,WANG Jinman,ZHANG Yafu,et al. Soil water in arid and semi-arid mining areas:a review[J]. Soils,2023,55(3):494−502.
    [63]
    李多美,孔 涛,陈 曦,等. 半干旱区复垦煤矿不同土地利用类型对土壤结构和水力学特性的影响[J/OL]. 煤炭科学技术,1−11[2023-11-20]. http://kns.cnki.net/kcms/detail/11.2402.TD.20230821.1018.001.html.

    LI Duomei,KONG Tao,CHEN Xi,et al. Effects of different land use types on soil structure and hydraulic characteristics of reclaimed coal mines in semi-arid areas[J]. Coal Science and Technology,1−11[2023-11-20]. http://kns.cnki.net/kcms/detail/11.2402.TD.20230821.1018.001.html.
    [64]
    FEIBI C,XINDE L. Effects of soil texture and water retaining agent on the emergence of processing tomatoes[J]. Journal of Agricultural Science,2009,1(1):2345.
    [65]
    张世文,蔡慧珍,张燕海,等. 煤矿区土壤细菌群落结构及其对不同复垦模式的响应[J/OL]. 煤炭科学技术,1−12[2023-11-20]. http://kns.cnki.net/kcms/detail/11.2402.TD.20231025.1314.001.html.

    ZHANG Shiwen,CAI Huizhen,ZHANG Yanhai,et al. Soil bacterial community structure in coal mining area and its response to different reclamation patterns[J]. Coal Science and Technology,1−12 [2023-11-20]. http://kns.cnki.net/kcms/detail/11.2402.TD.20231025.1314.001.html.
    [66]
    李 强,刘利军. 活性褐煤与菌根菌配施对矿区土壤性状及披碱草生长的影响[J]. 中国矿业,2018,27(9):109−113.

    LI Qiang,LIU Lijun. Activity of lignite and mycorrhizal fungi with the mining area soil characters and cover with alkali grass growth[J]. China Mining Magazine,2018,27(9):109−113.
    [67]
    任 倩. 菌根菌配施活性褐煤对矿区复垦土壤及披碱草生长的影响[D]. 晋中:山西农业大学,2018.

    REN Qian. Effects of mycorrhizal fungi combined with activated lignite application on reclaimed soil and the growth of Achyrandiae japonicum in mining area[D]. Jinzhong:Shanxi Agricultural University,2018.
    [68]
    LU C,ZHANG S,WANG J. Efficient activation of peroxymono sulfate by iron-containing mesoporous silica catalysts derived from iron tailings for degradation of organic pollutants[J]. Chemical Engineering Journal,2022,446:137044.
    [69]
    苏 迪,高宏宇,廖洪强,等. 煤矸石多孔土壤与天然土壤特性对比研究[J]. 矿产保护与利用,2020,40(3):106−109.

    SU Di,GAO Hongyu,LIAO Hongqiang,et al. Comparative study on characteristics of coal gangue porous soil and natural soil[J]. Conservation and Utilization of Mineral Resources,2020,40(3):106−109.
    [70]
    MOHAMMADI R,AZADMHR A,MAGHSOUDI A. Fabrication of the alginate-combusted coal gangue composite for simultaneous and effective adsorption of Zn(II) and Mn(II)[J]. Journal of Environmental Chemical Engineering,2019,7(6):103494. doi: 10.1016/j.jece.2019.103494
    [71]
    JIN Y,LIU Z,HAN L,et al. Synthesis of coal-analcime composite from coal gangue and its adsorption performance on heavy metal ions[J]. Journal of Hazardous Materials,2022,423:127027. doi: 10.1016/j.jhazmat.2021.127027
    [72]
    BU Naijing,LIU Xiaomeng,SONG Shaolei,et al. Synthesis of NaY zeolite from coal gangue and its characterization for lead removal from aqueous solution[J]. Advanced Powder Technology,2020,31(7):2699−2710. doi: 10.1016/j.apt.2020.04.035
    [73]
    LU C,YANG H,WANG J,et al. Utilization of iron tailings to prepare high-surface area mesoporous silica materials[J]. Science of the Total Environment,2020,736:139483. doi: 10.1016/j.scitotenv.2020.139483
  • Cited by

    Periodical cited type(2)

    1. 陈俊魁,袁超,董金发. 大倾角采煤工作面沿空留巷关键技术研究与应用. 煤炭与化工. 2025(05): 14-19 .
    2. 郭斌斌. 极近距离下层煤回采巷道稳定性控制技术. 煤炭技术. 2025(06): 71-74 .

    Other cited types(0)

Catalog

    Article views (767) PDF downloads (252) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return