YUAN Yong,CHEN Zhongshun,LIANG Xiaokang,et al. Mechanism and application of carbon dioxide phase change blasting fracturing[J]. Coal Science and Technology,2024,52(2):63−78
. DOI: 10.12438/cst.2023-1842Citation: |
YUAN Yong,CHEN Zhongshun,LIANG Xiaokang,et al. Mechanism and application of carbon dioxide phase change blasting fracturing[J]. Coal Science and Technology,2024,52(2):63−78 . DOI: 10.12438/cst.2023-1842 |
The structural transformation of coal and rock mass is a common core scientific problem to solve many technical problems in coal mines. Carbon dioxide phase change blasting has become one of the effective methods for coal and rock mass cracking due to its advantages of safety, controllability, and easy energy regulation. In order to determine the mechanism of carbon dioxide phase change blasting and expand the application of phase change blasting in engineering, the principle of carbon dioxide phase change blasting and the equipment for cracking were analyzed. Statistical comparisons were made between different methods for calculating the energy of phase change blasting. Compared to traditional explosive blasting, phase change blasting belongs to a low energy fracturing method. By analyzing the propagation characteristics of carbon dioxide phase change jet, the synergistic effect of medium stress initiation and high-pressure gas in phase change blasting is determined. Under medium impact, the coal and rock mass are subjected to tensile stress damage, resulting in radial initial fracture. Under the combined action of shock wave and unloading wave, multiple initiation characteristics are formed, and high-pressure gas further expands in multiple fractures, driving them to expand outward, Clarified the synergistic cracking process of phase change blasting stress gas. Further research was conducted on the effects of factors such as energy release direction, coal rock mass properties, blasting parameters, initial geostress, drilling layout parameters, and drilling groove characteristics on the cracking effect of phase change blasting. The energy release direction plays a direct role in the failure of coal rock mass, leading to asymmetric damage and failure. The compressive strength and cracking spacing of coal rock mass are key factors affecting the cracking effect. The initial geostress, drilling layout parameters, and drilling groove characteristics affect the development and propagation characteristics of cracks. In terms of the engineering application of phase change blasting fracturing, the multiple crack seepage characteristics of phase change blasting were revealed, the crack and permeability enhancement effect of high gas coal seams were determined, the coal cutting characteristics before and after presplitting were compared, the feasibility of presplitting to increase lump coal rate was verified, and the collapse characteristics of presplitting roof in phase change blasting were explored. Further expansion should be made towards the direction of multi rate fractturing caused by phase change blasting, multi-scale analysis of damage and failure, coupling of multiple physical fields during the cracking process and carbon dioxide phase delayed change blasting, which will expand the application scenarios of carbon dioxide phase change blasting.
[1] |
黄炳香,程庆迎,刘长友,等. 煤岩体水力致裂理论及其工艺技术框架[J]. 采矿与安全工程学报,2011,28(2):167−173. doi: 10.3969/j.issn.1673-3363.2011.02.001
HUANG Bingxiang,CHENG Qingying,LIU Changyou,et al. Hydraulic fracturing theory of coal-rock mass and lts technical framework[J]. Journal of Mining & Safety Engineering,2011,28(2):167−173. doi: 10.3969/j.issn.1673-3363.2011.02.001
|
[2] |
岳立新,孙可明,郝志勇. 超临界CO2提高煤层渗透性的增透规律研究[J]. 中国矿业大学学报,2014,43(2):319−324.
YUE Lixin,SUN Keming,HAO Zhiyong. Study on increased permeability law of coal seam by supercritical CO2[J]. Journal of China University of Mining & Technology,2014,43(2):319−324.
|
[3] |
刘佳佳,聂子硕,于宝种,等. 超临界二氧化碳对煤体增透的作用机理及影响因素分析[J]. 煤炭科学技术,2023,51(2):204−216.
LIU Jiajia,NIE Zishuo,YU Baozhong,et al. Analysis of the mechanism and influencing factors of supercritical carbon dioxide on coal permeability enhancement[J]. Coal Science and Technology,2023,51(2):204−216.
|
[4] |
CAO Y,ZHANG J,ZHAI H,et al. CO2 gas fracturing:A novel reservoir stimulation technology in low permeability gassy coal seams[J]. Fuel,2017,203:197−207.
|
[5] |
WEIR P,EDWARDS J H. Mechanical loading and Cardox revolutionize an old mine[J]. Coal Age,1928,33:288−290.
|
[6] |
LU T,WANG Z,YANG H,et al. Improvement of coal seam gas drainage by under-panel cross-strata stimulation using highly pressurized gas[J]. International Journal of Rock Mechanics and Mining Sciences,2015,77:300−312. doi: 10.1016/j.ijrmms.2015.03.034
|
[7] |
曹运兴,张军胜,田 林,等. 低渗煤层定向多簇气相压裂瓦斯治理技术研究与实践[J]. 煤炭学报,2017,42(10):2631−2641.
CAO Yunxing,ZHANG Junsheng,TIAN Lin,et al. Research and application of CO2 gas fracturing for gas control in low permeability coalseams[J]. Journal of China Coal Society,2017,42(10):2631−2641.
|
[8] |
聂 政. 二氧化碳炮爆破在煤矿的应用[J]. 煤炭技术,2007(8):62−63. doi: 10.3969/j.issn.1008-8725.2007.08.034
NIE Zheng. Application of cardox dioxide blasting technique in coal mines[J]. Coal Technology,2007(8):62−63. doi: 10.3969/j.issn.1008-8725.2007.08.034
|
[9] |
韦善阳,孙 威,苗 青,等. 液态CO2相变致裂技术在金佳煤矿的应用[J]. 煤炭科学技术,2019,47(2):94−100.
WEI Shanyang,SUN Wei,MIAO Qing,et al. Liquid carbon dioxide phase transition fracturing technology applied to Jinjia Mine[J]. Coal Science and Technology,2019,47(2):94−100.
|
[10] |
张宏伟, 朱 峰, 李云鹏, 等. 液态CO2致裂技术在冲击地压防治中的应用[J]. 煤炭科学技术, 2017, 45(12): 23−29.
ZHANG Hongwei, ZHU Feng, LI Yunpeng, et al. Application of liquid CO2 fracturing technique in rock burst control.[J]. Coal Science and Technology, 2017, 45(12): 23−29.
|
[11] |
倪 昊. 竖井二氧化碳“二阶二段”筒形掏槽爆破技术及应用[J]. 煤炭科学技术,2023,51(10):65−71.
NI Hao. Application and carbon dioxide two-step barrel cut blasting technology in coal mine shaft[J]. Coal Science and Technology,2023,51(10):65−71.
|
[12] |
周明安,周晓光,夏 军,等. 二氧化碳膨胀爆破技术现状及发展[J]. 采矿技术,2020,20(6):100−102. doi: 10.3969/j.issn.1671-2900.2020.06.027
ZHOU Mingan,ZHOU Xiaoguang,XIA jun,et al. The current status and development of carbon dioxide expansion blasting technology[J]. Mining Technology,2020,20(6):100−102. doi: 10.3969/j.issn.1671-2900.2020.06.027
|
[13] |
孙小明. 液态二氧化碳相变致裂掏槽破岩试验研究[J]. 煤炭科学技术, 2021, 49(8): 81−87.
SUN Xiaoming. Experimental study on cutting and rock breaking by liquid CO2 phase transition fracturing technology.[J]. Coal Science and Technology, 2021, 49(8): 81−87.
|
[14] |
陈忠顺. 低渗煤层二氧化碳相变爆破裂隙—渗流演化规律[D]. 徐州:中国矿业大学,2019.
CHEN Zhongshun. Fracture-seepage evolution law by carbon dioxide phase change blasting in low permeability coal seam [D]. Xuzhou:China University of Mining and Technology,2019.
|
[15] |
CHEN Z,YUAN Y,YAN C,et al. A Novel Carbon Dioxide Phase Transition Rock Breaking Technology:Theory and Application of Non-Explosive Blasting[J]. Processes,2022,10(11):2434. doi: 10.3390/pr10112434
|
[16] |
梅 比,高 星,方 莹,等. 二氧化碳膨胀爆破新型致裂管与安全技术研究[J]. 爆破,2021,38(2):153−159. doi: 10.3963/j.issn.1001-487X.2021.02.023
MEI Bi,GAO Xing,FANG Ying,et al. Study on a new type of fracturing tube and safety technology of carbon dioxide expansion blasting[J]. Blasting,2021,38(2):153−159. doi: 10.3963/j.issn.1001-487X.2021.02.023
|
[17] |
LI Q,CHEN G,LUO D,et al. An experimental study of a novel liquid carbon dioxide rock-breaking technology[J]. International Journal of Rock Mechanics and Mining Sciences,2020,128:104244. doi: 10.1016/j.ijrmms.2020.104244
|
[18] |
董庆祥,王兆丰,韩亚北,等. 液态CO2相变致裂的TNT当量研究[J]. 中国安全科学学报,2014,24(11):84−88.
DONG Qingxiang,WANG Zhaofeng,HAN Yabei,et al. Research on TNT equivalent of liquid CO2 phase-transition fracturing[J]. China Safety Science Journal,2014,24(11):84−88.
|
[19] |
李文炜,狄 刚,王瑞欣. 船运液态二氧化碳储罐爆炸事故的原因分析[J]. 安全与环境工程,2010,17(1):95−98. doi: 10.3969/j.issn.1671-1556.2010.01.024
LI Wenwei,DI Gang,WANG Ruixin. Analysis of a liquid CO2 tank explosion on a ship[J]. Safety and Environmental Engineering,2010,17(1):95−98. doi: 10.3969/j.issn.1671-1556.2010.01.024
|
[20] |
YANG Z,ZHOU Y,XU X,et al. Numerical modeling of liquid CO2 phase transition blasting based on smoothed particle hydrodynamics algorithm[J]. Thermal Science,2019,23(S3):693−702.
|
[21] |
王旭锋,牛志军,张 磊,等. 超声振动在矿山煤岩致裂中的研究进展与展望[J]. 煤炭科学技术,2024,52(1):232−243. doi: 10.12438/cst.2022-2121
WANG Xufeng,NIU Zhijun,ZHANG Lei,et al. Research progress and prospects of ultrasonic vibration in coal rock fracturing[J]. Coal Science and Technology,2024,52(1):232−243. doi: 10.12438/cst.2022-2121
|
[22] |
郭杨霖. 液态二氧化碳相变致裂机理及应用效果分析[D]. 焦作:河南理工大学,2017.
GUO Yanglin. Fracturing mechanisms and functions of improvement of gas drainage of highly pressurized carbon dioxide gas system[D]. Jiaozuo:Henan Polytechnic University,2017.
|
[23] |
YANG X,WEN G,SUN H,et al. Environmentally friendly techniques for high gas content thick coal seam stimulation─ multi-discharge CO2 fracturing system[J]. Journal of Natural Gas Science and Engineering,2019,61:71−82. doi: 10.1016/j.jngse.2018.11.006
|
[24] |
柯 波. 超临界二氧化碳相变动力学及其破岩机理试验研究[D]. 长沙:中南大学,2017.
KE Bo. Experimental study on phase transition dynamic of supercritical carbon dioxide and its rock breaking mechanism[D]. Changsha:Central South University,2017.
|
[25] |
苏凯凯. 二氧化碳致裂器露天破岩机理研究及施工参数优化[D]. 青岛:山东科技大学,2019.
SU Kaikai. Mechanism of action and the optimization of the optimization ofconstruction parametes of opencast mining of rock with carbon dioxide fracturer [D]. Qingdao:Shandong University of science and technology,2019.
|
[26] |
张嘉凡,程树范,高 壮,等. 煤岩液态二氧化碳爆破开采实践与模拟[J]. 煤炭科学技术,2020,48(S1):24−27.
ZHANG Jiafan,CHENG Shufan,GAO Zhuang,et al. Practice and simulation of coal-rock mining by liquid carbon dioxide blasting[J]. Coal Science and Technology,2020,48(S1):24−27.
|
[27] |
魏建平,崔家玮,张铁岗,等. 腔径比对自激振荡脉冲超临界二氧化碳射流性能影响[J]. 煤炭学报,2022,47(9):3239−3249.
WEI Jianping,CUI Jiawei,ZHANG Tiegang,et al. Effect of cavity diameter ratio on the pulse performance ofself-excited oscillation pulsed supercritical carbon dioxide jet[J]. Journalof China Coal Society,2022,47(9):3239−3249.
|
[28] |
白 鑫,张东明,王 艳,等. 液态CO2相变射流压力变化及其煤岩致裂规律[J]. 中国矿业大学学报,2020,49(4):661−670.
BAI Xin,ZHANG Dongming,WANG Yan,et al. Pressure variation and coal fracturing law of liquid CO2 phase transition jet[J]. Journal of China University of Mining & Technology,2020,49(4):661−670.
|
[29] |
李必红,夏 军,陈丁丁. CO2液-气相变膨胀破岩机理及其安全效应测试研究[J]. 采矿技术,2017,17(1):61−63. doi: 10.3969/j.issn.1671-2900.2017.01.025
LI Bihong,XIA Jun,CHEN Dingding. Research on the mechanism of CO2 liquid gas phase change expansion and rock breaking and its safety effect testing[J]. Mining Technology,2017,17(1):61−63. doi: 10.3969/j.issn.1671-2900.2017.01.025
|
[30] |
邵 鹏,徐志伟,周金生,等. 非炸药破岩新技术[M]. 徐州:中国矿业大出版社,2012.
SHAO Peng,XU Zhiwei,ZHOU Jinsheng,et al. New technology for non explosive rock breaking [M]. Xuzhou:China University of Mining and Technology Press,2012.
|
[31] |
SHANG Z,WANG H,LI B,et al. Experimental investigation of BLEVE in liquid CO2 phase-transition blasting for enhanced coalbed methane recovery[J]. Fuel,2021,292:120283. doi: 10.1016/j.fuel.2021.120283
|
[32] |
彭 然,霍中刚,温 良. 二氧化碳致裂器止飞技术研究[J]. 煤炭科学技术,2020,48(S1):134−139.
PENG Ran,HUO Zhonggang,WEN Liang. Study on anti-flying technology of carbon dioxide fracturer[J]. Coal Science and Technology,2020,48(S1):134−139.
|
[33] |
GAO F,TANG L,ZHOU K,et al. Mechanism analysis of liquid carbon dioxide phase transition for fracturing rock masses[J]. Energies,2018,11(11):2909. doi: 10.3390/en11112909
|
[34] |
WANG H,CHANG L,LIU Q. Enhanced CMM drainage with high-pressure gas fracturing:a novel way to control greenhouse gas emissions in the coal mine. [J]. Journal of Residuals Science & Technology,2017,14(2):57−66.
|
[35] |
周盛涛,罗学东,蒋 楠,等. 二氧化碳相变致裂技术研究进展与展望[J]. 工程科学学报,2021,43(7):883−893.
ZHOU Shengtao,LUO Xuedong,JIANG Nan,et al. A review on fracturing technique with carbon dioxide phase transition[J]. Chinese Journal of Engineering,2021,43(7):883−893.
|
[36] |
HU S,PANG S,YAN Z. A new dynamic fracturing method:deflagration fracturing technology with carbon dioxide[J]. International Journal of Fracture,2019,220(1):99−111. doi: 10.1007/s10704-019-00403-8
|
[37] |
丛日超,王海柱,李根生,等. 超临界CO2聚能压裂开发煤层气可行性研究[J]. 煤炭学报,2023,48(8):3162−3171.
CONG Richao,WANG Haizhu,LI Gensheng,et al. Feasibility on exploitation of coalbed methane by SC-CO2 shock fracturing[J]. Journalof China Coal Society,2023,48(8):3162−3171.
|
[38] |
吴飞鹏. 高能气体压裂过程动力学模型与工艺技术优化决策研究[D]. 青岛:中国石油大学,2009.
WU Feipeng. The Kinetic model and the technology optimization of HEGF process [D]. Qingdao:China University of Petroleum,2009.
|
[39] |
JIANG K,DENG S,JIANG X,et al. Calculation of fracture number and length formed by methane deflagration fracturing technology[J]. International Journal of Impact Engineering,2023:104701.
|
[40] |
左 磊. 侧壁泄能式二氧化碳相变爆破致裂机理研究[D]. 徐州:中国矿业大学,2023.
ZUO Lei. Mechanism of carbon dioxide phase change blasting with side wall energy release[D]. Xuzhou:China University of Mining and Technology,2023.
|
[41] |
孟朝贵. 二氧化碳相变爆破致裂煤体的影响因素与参数优化研究[D]. 徐州:中国矿业大学,2020.
MENG Chaogui. Study on the influencing factors and parameter optimization of coal body caused by carbon dioxide phase change blasting [D]. Xuzhou:China University of Mining and Technology,2020.
|
[42] |
孙可明,辛利伟,吴 迪,等. 初应力条件下超临界CO2气爆致裂规律研究[J]. 固体力学学报,2017,38(5):473−482.
SUN Keming,XIN Liwei,WU Di,et al. Mechanism of fracture caused by supercritical CO2 explosion under the impact of initial stress[J]. Chinese Journal of Solid Mechanics,2017,38(5):473−482.
|
[43] |
孙可明,王金彧,辛利伟. 不同应力差条件下超临界CO2气爆煤岩体气楔作用次生裂纹扩展规律研究[J]. 应用力学学报,2019,36(2):466−472.
SUN Keming,WANG Jinyu,XIN Liwei. Research on the law of secondary cracks propagation in coal and rock caused by gas wedging during supercritical CO2 explosion under different stress differences[J]. Chinese Journal of Applied Mechanics,2019,36(2):466−472.
|
[44] |
李亚东. 二氧化碳爆破作用下砂岩裂隙扩展规律研究[D].石家庄: 石家庄铁道大学,2023.
LI Yadong. Study on the expansion law of sandstone fractures under the action of Carbon Dioxide blasting[D]. Shijiazhuang:Shijiazhuang Tiedao University,2023.
|
[45] |
王兆丰,李豪君,陈喜恩,等. 液态CO2相变致裂煤层增透技术布孔方式研究[J]. 中国安全生产科学技术,2015,11(9):11−16.
WANG Zhaofeng,LI Haojun,CHEN Xien,et al. Study on hole layout of liquid CO2 phase-transforming fracture technology for permeability improvement of coal seam[J]. Journal of Safety Science and Technology,2015,11(9):11−16.
|
[46] |
潘红宇,王 康,张天军,等. CO2气爆含控制孔煤层裂隙演化颗粒流模拟[J]. 西安科技大学学报,2021,41(2):230−236.
PAN Hongyu,WANG Kang,ZHANG Tianjun,et al. Particle flow simulation of CO2 explosion fracture evolution in coal seam with control holes[J]. Journnal of Xi’An University of Science and Technology,2021,41(2):230−236.
|
[47] |
谢晓锋,李夕兵,李启月,等. 液态CO2相变破岩桩井开挖技术[J]. 中南大学学报(自然科学版),2018,49(8):2031−2038. doi: 10.11817/j.issn.1672-7207.2018.08.025
XIE Xiaofeng,LI Xibing,LI Qiyue,et al. Liquid CO2 phase-transforming rock fracturing technology in pile-well excavation[J]. Journal of Central South University (Science and Technology),2018,49(8):2031−2038. doi: 10.11817/j.issn.1672-7207.2018.08.025
|
[48] |
刘全保,王 飞,闫晶晶,等. CO2切槽定向致裂机理实验研究[J]. 煤矿安全,2018,49(5):23−26.
LIU Quanbao,WANG Fei,YAN Jingjing,et al. Directional fracturing caused by Carbon Dioxide[J]. Safety in Coal Mines,2018,49(5):23−26.
|
[49] |
宋水舟,张昌锁,薛 剑,等. 提高综采块煤率的爆破卸载技术研究[J]. 煤炭技术,2018,37(3):52−54.
SONG Shuizhou,ZHANG Changsuo,XUE Jian,et al. Research on application of blast-unloading in increasing lump coal rate of fully-mechanized mining face[J]. Coal Technology,2018,37(3):52−54.
|
[50] |
王圣志. 超前预裂爆破提高硬煤综采面块煤率机理[D]. 徐州:中国矿业大学,2021.
WANG Shengzhi. Mechanism of pre-splitting blasting to increase lump coal rate in hard coal fully mechanized mining face [D]. Xuzhou:China University of Mining and Technology,2021.
|
[51] |
邓广哲,张少春. 煤炭开采粒级控制理论与应用[M]. 北京:科学出版社,2021.
DENG Guangzhe,ZHANG Shaochun. Theory and application of particle size control in coal mining [M] Beijing:Science Press,2021.
|
[52] |
李树刚,乌日宁,赵鹏翔,等. 综采工作面上隅角瓦斯流动活跃区形成机理研究[J]. 煤炭科学技术,2019,47(1):207−213.
LI Shugang,WU Rining,ZHAO Pengxiang,et al. Study on formation mechanism of gas flow active area in upper corner of fully-machanized mining face[J]. Coal Science and Technology,2019,47(1):207−213.
|
[53] |
田时锋,周军平,鲜学福,等. 超临界CO2作用下页岩抗拉强度的变化规律[J]. 煤炭学报,2023,48(7):2728−2736.
TIAN Shifeng,ZHOU Junping,XIAN Xuefu,et al. Effect of supercritical CO2 on alteration of tensile strength of shale[J]. Journal of China Coal Society,2023,48(7):2728−2736.
|
[54] |
高亚楠,高 峰,谢 晶,等. 温度-围压-瓦斯压力作用下煤岩力学性质及有限变形行为[J]. 煤炭学报,2021,46(3):898−911.
GAO Yanan,GAO Feng,XIE Jing,et al. Mechanical properties and finite deformation behavior of coal under temperature,confining pressure and gas pressure[J]. Journal of China Coal Society,2021,46(3):898−911.
|
[55] |
胡少斌,蔡余康,王恩元,等. 高温高压CO2反应流动相变致裂机理[J]. 中国矿业大学学报,2023,52(6):1203−1215.
HU Shaobin,CAI Yukang,WANG Enyuan,et al. Mechanism of phase change cracking in high temperature and high pressure CO2 reaction flow[J]. Journal of China University of Mining & Technology,2023,52(6):1203−1215.
|
[56] |
刘 勇,张东鑫,张宏图,等. 超临界二氧化碳射流冲击短时浸泡煤体破坏特征分析[J]. 煤炭学报,2022,47(9):3310−3319.
LIU Yong,ZHANG Dongxin,ZHANC Hongtu,et al. Analysis of damage characteristics of coal body with supercritical carbon dioxide jet impact short time soaking[J]. Journal of China Coal Society,2022,47(9):3310−3319.
|
[57] |
尤 秀,巢光华. 电子点火头在二氧化碳爆破技术中的应用[J]. 科技创新导报,2020,17(25):50−52.
YOU Xiu,CHAO Guanghua. Application of inteigent eiectronic ignition element in carbon dioxide blasting technology[J]. Science and Technology Innovation Herald,2020,17(25):50−52.
|
1. |
安小磊,江柏,董传才,郭玉朋. 矿井智能通风传感器部署优化与应用研究. 中国设备工程. 2025(S1): 9-12 .
![]() | |
2. |
李继平. 矿井智能通风系统的设计与应用. 能源与节能. 2025(02): 100-102+106 .
![]() | |
3. |
李孜军,陈寅,王国强,徐宇,李守强,张云韦. 喀拉通克铜镍矿智能通风技术研究与应用. 矿冶. 2025(01): 19-25 .
![]() | |
4. |
秦波涛,马东. 采空区煤自燃与瓦斯复合灾害防控研究进展及挑战. 煤炭学报. 2025(01): 392-408 .
![]() | |
5. |
张浪,雷爽,李伟,刘彦青. 基于改进人工蜂群算法的矿井风量按需调控智能决策. 工矿自动化. 2025(03): 131-137 .
![]() | |
6. |
高科,戚志鹏,唐志强,石连增,袁可一,吕航宇. 矿井智能通风研究进展与前沿展望. 矿业安全与环保. 2025(02): 17-23 .
![]() | |
7. |
刘湘滢. 矿井智能通风研究进展及展望. 工矿自动化. 2025(04): 44-56 .
![]() | |
8. |
张官禹,马腾,王光明. 伊新煤业矿井通风阻力测定与分析. 山东煤炭科技. 2025(04): 56-60+70 .
![]() | |
9. |
李伟,刘彦青,张浪. 外因火灾通风网络风量风质失效模型与数值解算方法. 煤炭科学技术. 2025(05): 196-212 .
![]() | |
10. |
贾瞳,马恒,高科. 引入风量波动因子动态解算矿井热流耦合通风网络. 煤炭学报. 2025(05): 2527-2539 .
![]() | |
11. |
吴奉亮,寇露. 用于矿井通风网络解算的通风机风压性能曲线自动识别方法. 工矿自动化. 2024(04): 103-111 .
![]() | |
12. |
陈炫中,王孝东,杨懿杰,吕玉琪,刘唱,杜青文,谢博. 矿井巷道风速智能感知技术研究进展. 矿产保护与利用. 2024(04): 124-134 .
![]() | |
13. |
秦桐,郭朝伟,邵昊,孙耀辉. 流场对采空区温度分布演化规律的影响研究. 煤矿安全. 2024(09): 110-117 .
![]() | |
14. |
臧燕杰,杨彦龙. 通风智能化技术在沙吉海煤矿的研究和应用. 内蒙古煤炭经济. 2024(17): 104-107 .
![]() | |
15. |
刘丹丹,沈琪翔,王威廉,郭胜均,汪春梅,贺平. 综掘工作面通风除尘系统结构优化及参数智能调控. 工矿自动化. 2024(10): 152-159 .
![]() | |
16. |
李全,宋宇航. 矿井智能通风实时监测与自动控制系统建设. 山东煤炭科技. 2024(11): 117-121+126 .
![]() |