Citation: | BAO Xiankai,ZHANG Tong,CUI Guangqin,et al. Fracture evolution characteristics of coal rock mass by high-voltage electric pulse fracturing in water[J]. Coal Science and Technology,2025,53(4):324−337. DOI: 10.12438/cst.2023-1815 |
High-voltage electric pulse fracturing in water is an important way to improve the efficiency of coalbed methane exploitation. To study the characteristics and laws of crack fracture in the process of high-voltage electric pulse fracturing coal rock mass in water, based on acoustic emission technology, by conducting high-pressure electric pulse stamping and fracturing tests on coal and rock masses in water, the crack fracture evolution characteristics under different discharge voltages were quantitatively analyzed using ringing and energy, and the event distribution and fractal dimension were used to analyze the crack development and propagation law, combining with the numerical simulation of PFC2D particle flow, the morphological characteristics of crack initiation and propagation were further studied from the mesoscale. The results show that: At a constant hydrostatic pressure, there are a optimal discharge times for cracking coal rock mass caused by different discharge voltages, after the optimal discharge times, the cumulative ringing count, maximum ringing count and cumulative energy of the coal rock mass specimens reach the peak, these parameters gradually decrease if the discharge time increase. With the increase of discharge voltage and times, forming a large number of microcracks and multiple X-shaped main cracks with an direction of 45°. Discharge after reaching the optimal discharge times, the number, scale and density of microcracks basically no longer increase, while the penetrating main cracks further develop and expand, and the length continues to increase. With the increase of discharge times, the fractal dimension value gradually decreases, the crack gradually adjusts from random and disordered microcracks to orderly and penetrating main cracks, and the crack complexity gradually decreases. The simulation results show that a large number of microcracks and unequal numbers of primary and secondary cracks are formed around the borehole of the coal rock mass after the discharge in the borehole water, and the length of the main crack increases significantly with the increase of discharge voltage and times. The research results can provide theoretical support for the application of high-voltage electric pulse fracturing coal rock mass reservoir technology in water.
[1] |
鲍先凯,刘源,郭军宇,等. 煤岩体在水中高压放电下致裂效果的定量评价[J]. 岩石力学与工程学报,2020,39(4):715−725.
BAO Xiankai,LIU Yuan,GUO Junyu,et al. Quantitative evaluation of fracturing effect of coal-rock masses under high-voltage discharge actions in water[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(4):715−725.
|
[2] |
ZHANG X L,LIN B Q,LI Y J,et al. Analysis of fractal dimension of coal subjected to electrical breakdown based on nuclear magnetic resonance[J]. Journal of Natural Gas Science and Engineering,2020,79:103345. doi: 10.1016/j.jngse.2020.103345
|
[3] |
林柏泉,钟璐斌,张祥良,等. 高压电脉冲对烟煤微观孔隙结构的影响作用[J]. 采矿与安全工程学报,2022,39(2):380−386.
LIN Baiquan,ZHONG Lubin,ZHANG Xiangliang,et al. Effect of high voltage pulse on micro-pore structure of bituminous coal[J]. Journal of Mining & Safety Engineering,2022,39(2):380−386.
|
[4] |
张重远,何满潮,陶志刚,等. 发震断层震前应力降现象及其机制探讨[J]. 岩石力学与工程学报,2021,40(5):916−927.
ZHANG Chongyuan,HE Manchao,TAO Zhigang,et al. Discussion on stress drop mechanisms of seismogenic faults before earthquakes[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(5):916−927.
|
[5] |
唐一举,郝天轩,刘静,等. 破坏程度不同煤体失稳过程红外辐射及裂隙演化特征研究[J]. 岩土力学,2023,44(10):2907−2920.
TANG Yiyi,HAO Tianxuan,LIU Jing,et al. Study on infrared radiation and fracture evolution characteristics of coal instability process with different failure degrees[J]. Rock and Soil Mechanics,2023,44(10):2907−2920.
|
[6] |
靖洪文,吴疆宇,孟波,等. 深部矩形底煤巷围岩破坏失稳全过程宏细观演化特征研究[J]. 采矿与安全工程学报,2022,39(1):82−93.
JING Hongwen,WU Jiangyu,MENG Bo,et al. Macroscopic and mesoscopic evolution characteristics of surrounding rock of rectangular bottom coal roadway in deep during failure[J]. Journal of Mining & Safety Engineering,2022,39(1):82−93.
|
[7] |
郭跃辉,雷东记,张玉贵,等. 水力压裂煤体复电阻率频散特征试验研究[J]. 煤炭科学技术,2021,49(5):198−202.
GUO Yuehui,LEI Dongji,ZHANG Yugui,et al. Experimental study on dispersion characteristics of complex resistivity of hydraulic fracturing coal[J]. Coal Science and Technology,2021,49(5):198−202.
|
[8] |
CHEN D,LI N,SUN W C. Rupture properties and safety assessment of raw coal specimen rupture process under true triaxial hydraulic fracturing based on the source parameters and magnitude[J]. Process Safety and Environmental Protection,2022,158:661−673. doi: 10.1016/j.psep.2021.12.007
|
[9] |
唐巨鹏,齐桐,代树红,等. 基于声发射能量分析的周期注水应力改造下煤系页岩裂缝扩展规律试验研究[J]. 实验力学,2020,35(4):639−649. doi: 10.7520/1001-4888-18-256
TANG Jupeng,QI Tong,DAI Shuhong,et al. Experimental study on crack propagation of coal shale under stress transformation of cyclic water injection based on acoustic emission energy[J]. Journal of Experimental Mechanics,2020,35(4):639−649. doi: 10.7520/1001-4888-18-256
|
[10] |
陈结,刘博,朱超,等. 基于煤样破坏声发射特征的冲击地压评价预警研究[J]. 煤炭科学技术,2023,51(2):116−129.
CHEN Jie,LIU Bo,ZHU Chao,et al. Early-warning evaluation and warning of rock burst using acoustic emission characteristics of coal sample failure[J]. Coal Science and Technology,2023,51(2):116−129.
|
[11] |
杨磊. 不同冲击倾向性煤体声发射能量特征与时空演化规律研究[J]. 采矿与安全工程学报,2020,37(3):525−532.
YANG Lei. Acoustic emission energy characteristics and time-space evolution law of coal with different rockburst tendency[J]. Journal of Mining & Safety Engineering,2020,37(3):525−532.
|
[12] |
LI N,SUN W C,HUANG B X,et al. Acoustic emission source location monitoring of laboratory-scale hydraulic fracturing of coal under true triaxial stress[J]. Natural Resources Research,2021,30(3):2297−2315. doi: 10.1007/s11053-021-09821-9
|
[13] |
吴晶晶,张绍和,孙平贺,等. 煤岩脉动水力压裂过程中声发射特征的试验研究[J]. 中南大学学报(自然科学版),2017,48(7):1866−1874. doi: 10.11817/j.issn.1672-7207.2017.07.025
WU Jingjing,ZHANG Shaohe,SUN Pinghe,et al. Experimental study on acoustic emission characteristics in coal seam pulse hydraulic fracturing[J]. Journal of Central South University (Science and Technology),2017,48(7):1866−1874. doi: 10.11817/j.issn.1672-7207.2017.07.025
|
[14] |
KONG X G,WANG E Y,HU S B,et al. Fractal characteristics and acoustic emission of coal containing methane in triaxial compression failure[J]. Journal of Applied Geophysics,2016,124:139−147. doi: 10.1016/j.jappgeo.2015.11.018
|
[15] |
李庶林,林朝阳,毛建喜,等. 单轴多级循环加载岩石声发射分形特性试验研究[J]. 工程力学,2015,32(9):92−99. doi: 10.6052/j.issn.1000-4750.2014.01.0094
LI Shulin,LIN Chaoyang,MAO Jianxi,et al. Experimental study on fractal dimension characteristics of acoustic emission of rock under multilevel uniaxial cyclic loading[J]. Engineering Mechanics,2015,32(9):92−99. doi: 10.6052/j.issn.1000-4750.2014.01.0094
|
[16] |
卢志国,鞠文君,高富强,等. 结构性煤体间歇性破坏行为的实验及数值模拟研究[J]. 岩石力学与工程学报,2020,39(5):971−983.
LU Zhiguo,JU Wenjun,GAO Fuqiang,et al. Experimental and numerical simulation research on intermittent failure of structural coal[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(5):971−983.
|
[17] |
陈云娟,高涛,高成路,等. 水力耦合作用下裂隙岩体破裂扩展及声发射能量损伤规律[J]. 中南大学学报(自然科学版),2022,53(6):2325−2335. doi: 10.11817/j.issn.1672-7207.2022.06.032
CHEN Yunjuan,GAO Tao,GAO Chenglu,et al. Fracture propagation and acoustic emission energy damage law of fractured rock mass under hydraulic coupling action[J]. Journal of Central South University (Science and Technology),2022,53(6):2325−2335. doi: 10.11817/j.issn.1672-7207.2022.06.032
|
[18] |
刘源. 细观尺度下高压电脉冲水压压裂煤岩体损伤演化及致裂效果定量评价[D]. 包头:内蒙古科技大学,2021.
LIU Yuan. Quantitative evaluation of damage evolution and fracturing effect of coal and rock mass by high voltage electric pulse hydraulic fracturing at meso-scale[D]. Baotou:Inner Mongolia University of Science & Technology,2021.
|
[19] |
高文根,段会强,杨永新. 周期荷载作用下煤岩声发射特征的颗粒流模拟[J]. 应用力学学报,2021,38(1):262−268.
GAO Wengen,DUAN Huiqiang,YANG Yongxin. Particle flow simulation of acoustic emission characteristics of coal sample subjected to cyclic loading[J]. Chinese Journal of Applied Mechanics,2021,38(1):262−268.
|
[20] |
鲍先凯. 高压电脉冲水压压裂煤体机理及实验研究[D]. 太原:太原理工大学,2018.
BAO Xiankai. Mechanism and experimental study on high voltage pulse hydraulic fracturing of coal body[D]. Taiyuan:Taiyuan University of Technology,2018.
|
[21] |
TAO J,YANG X G,LI H T,et al. Effects of in situ stresses on dynamic rock responses under blast loading[J]. Mechanics of Materials,2020,145:103374. doi: 10.1016/j.mechmat.2020.103374
|
[22] |
薄云鹤. 火山岩水平井分段压裂应力场变化规律分析[D]. 大庆:东北石油大学,2019.
BO Yunhe. Analysis of stress field variation law of staged fracturing in volcanic horizontal wells[D]. Daqing:Northeast Petroleum University,2019.
|
[23] |
郝保钦,张昌锁,王晨龙,等. 岩石PFC2D模型细观参数确定方法研究[J]. 煤炭科学技术,2022,50(4):132−141.
HAO Baoqin,ZHANG Changsuo,WANG Chenlong,et al. Study on determination micro-parameters of rock PFC2D model[J]. Coal Science and Technology,2022,50(4):132−141.
|
[24] |
周天白,杨小彬,韩心星. 煤岩单轴压缩破坏PFC2D数值反演模拟研究[J]. 矿业科学学报,2017,2(3):260−266.
ZHOU Tianbai,YANG Xiaobin,HAN Xinxing. Numerical inversion simulation of coal and rock under uniaxial compression failure in PFC2D[J]. Journal of Mining Science and Technology,2017,2(3):260−266.
|
[25] |
任建喜,景帅,张琨. 冲击倾向性煤岩动静载下破坏机理及声发射特性研究[J]. 煤炭科学技术,2021,49(3):57−63.
REN Jianxi,JING Shuai,ZHANG Kun. Study on failure mechanism and acoustic emission characteristics of outburst proneness coal rock under dynamic and static loading[J]. Coal Science and Technology,2021,49(3):57−63.
|
[1] | BAO Xiankai, QIAO Jianlong, CUI Guangqin, WANG Lingyu, TIAN Baolong, WANG Lizhi. Damage and crack propagation evolution of coal rock under combined voltage discharge in water[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(3): 248-263. DOI: 10.12438/cst.2024-1406 |
[2] | HAO Baoqin, ZHANG Changsuo, WANG Chenlong, REN Chao. Study on determination micro-parameters of rock PFC2D model[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(4): 132-141. |
[3] | XIAO Cui, CHEN Zhenlong, JIN Xiaobo. Coal structure model and fracturing effect of Yanchuannan coalbed gas field[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(11): 38-46. |
[4] | YUAN Junwei CHANG Duo, . Contrast test of liquid nitrogen freeze-thaw cycle cracking effect between anthracite and coking coal[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(12). |
[5] | MA Xiaomin. Effect of liquid CO2 phase change fracturing on effective gas extraction radius - an experimental study[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (2). |
[6] | CHENG Hongming, QIAO Yuandong, DONG Chuanlong. Study on hydraulic fractured gas drainage effect based on Hoek-Brown Criterion[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (9). |
[7] | BAO Xiankai WU Jinwen YANG Dongwei HUANG Chunhui DUAN Dongming, . Experimental study on coal fracturing effect by high-voltage pulsed water pressure[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (9). |
[8] | Zhao Yangfeng Zhang Chao Liu Liqiang Zhu Xiaojing, . Experiment study of acoustic emission during fracture process of pre-crack granite under uniaxial compression[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (7). |
[9] | Zhang Chunhui Liu Pansen Wang Xizhao Yu Yongjiang Guo Xiaokang Wang Laigui, . Contrast test study on fracturing anthracite and coking coal by liquid nitrogen cooling[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (6). |
[10] | Experiment of Acoustic Emission and Numerical Simulation During Loaded Rock and Soil Fracturing Process[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (5). |
1. |
刘慧. 煤矿液压支架顶梁结构优化设计. 凿岩机械气动工具. 2025(01): 25-27 .
![]() | |
2. |
闫琛. 蛇形切割工艺在煤巷快速掘进中的应用分析. 凿岩机械气动工具. 2025(01): 80-82 .
![]() | |
3. |
樊武振. 大倾角采煤工作面综采设备防倒防滑技术研究. 陕西煤炭. 2025(03): 159-163 .
![]() | |
4. |
王磊,孙凯,袁瑞甫,齐俊艳. 基于EtherCAT的液压支架智能控制系统研究. 河南理工大学学报(自然科学版). 2025(03): 53-63 .
![]() | |
5. |
朱开鹏,罗生虎,解盘石,李志林,樊娟,田程阳,易磊磊,徐辉. 倾斜采场覆岩非对称载荷传递路径倾角效应. 煤田地质与勘探. 2025(04): 168-181 .
![]() | |
6. |
姚钰鹏,张境麟,熊武. 基于LSTM的液压支架尾梁倾角预测方法. 煤炭科学技术. 2025(05): 362-371 .
![]() | |
7. |
谢波,梁帮治,杨强,段雨安. 地层特征重构下的气井射孔位置回归优化. 人工智能科学与工程. 2024(04): 52-59 .
![]() |