Citation: | HE Jie,WU Yongzheng,SUN Zhuoyue,et al. Experimental study on impact mechanical properties and energy dissipation of pre–drilled hole coal samples under impact load[J]. Coal Science and Technology,2024,52(2):92−103. DOI: 10.12438/cst.2023-1789 |
In order to study the mechanical properties and energy dissipation law of pre–drilled coal samples under impact loads, the cylindrical coal samples with a diameter of 50 mm and a height of 50 mm containing axial holes were prepared. a split Hopkinson pressure bar (SHPB) was used to conduct loading experiments with 8 hole sizes and 3 impact pressure levels. Using plane field strain measurement technology (VIC–2D) and high-speed cameras, the dynamic stress, dynamic strain, crack evolution, failure modes and energy dissipation characteristics of the specimens were analyzed. The results indicate that the dynamic stress-strain curve of intact and porous coal samples under impact load exhibit micro crack compaction stage, elastic stage, plastic stage, and failure stage. Under the same impact pressure, as the hole size increases, the dynamic compressive strength and dynamic peak strain both decrease. When the diameter of the hole increases from 0 to 8 mm, the dynamic compressive strength and peak strain of the coal sample show a fast−slow zoning characteristic. Unlike intact coal samples which mainly exhibit tensile failure, porous coal samples mainly exhibit tensile-shear composite failure, and as the hole size increases, the internal crack propagation ability of the specimen weakens. In addition, this article reveals the energy dissipation law of coal samples with hole under impact loads. The transmitted energy and dissipated energy of coal samples with hole are negatively correlated with hole size, while the reflected energy is positively correlated with hole size. This is mainly caused by the changes in the wave impedance of the specimen caused by the hole. As the hole size increases, the wave impedance of the coal sample decreases, and its dissipated and transmitted energy also decrease, which is consistent with the conclusion that the fragmentation degree of coal samples under impact load is negatively correlated with the hole size. The research results are beneficial for clarifying the mechanism of drilling pressure relief in rock burst roadways and providing theoretical support for the prevention and control of rock burst.
[1] |
康红普,徐 刚,王彪谋,等. 我国煤炭开采与岩层控制技术发展40a及展望[J]. 采矿与岩层控制工程学报,2019,1(1):013501.
KANG Hongpu,XU Gang,WANG Biaomou,et al. Forty years development and prospects of underground coal mining and strata control technologies in China[J]. Journal of Mining and Strata Control Engineering,2019,1(1):013501.
|
[2] |
姜福兴,张 翔,朱斯陶. 煤矿冲击地压防治体系中的关键问题探讨[J]. 煤炭科学技术,2023,51(1):203−213.
JIANG Fuxing,ZHANG Xiang,ZHU Sitao. Discussion on key problems in prevention and control system of coal mine rock burst[J]. Coal Science and Technology,2023,51(1):203−213.
|
[3] |
齐庆新,李一哲,赵善坤,等. 我国煤矿冲击地压发展70年:理论与技术体系的建立与思考[J]. 煤炭科学技术,2019,47(9):1−40.
QI Qingxin,LI Yizhe,ZHAO Shankun,et al. Seventy years development of coal mine rockburst in China:establishment and consideration of theory and technology system[J]. Coal Science and Technology,2019,47(9):1−40.
|
[4] |
姜福兴,陈 洋,李 东,等. 孤岛充填工作面初采致冲力学机理探讨[J]. 煤炭学报,2019,44(1):151−159.
JIANG Fuxing,CHEN Yang,LI Dong,et al. Study on mechanical mechanism of rock burst at isolated backfilling working face during primary mining[J]. Journal of China Coal Society,2019,44(1):151−159.
|
[5] |
鞠文君. 急倾斜特厚煤层水平分层开采巷道冲击地压成因与防治技术研究[D]. 北京:北京交通大学,2009.
JU Wenjun. Study on reasons of rock burst in roadway and prevention technology of steeply-incline dand extremely thick coal seam with horizontally slicing way[D]. Beijing: Beijing Jiaotong University, 2009.
|
[6] |
张俊文,宋治祥,刘金亮,等. 煤矿深部开采冲击地压灾害结构调控技术架构[J]. 煤炭科学技术,2022,50(2):27−36.
ZHANG Junwen, SONG Zhixiang, LIU Jinliang,et al. Architecture of structural regulation technology for rock burst disaster in deep mining of coal mine[J]. Coal Science and Technology,2022,50(2):27−36.
|
[7] |
李振雷,窦林名,蔡 武,等. 深部厚煤层断层煤柱型冲击矿压机制研究[J]. 岩石力学与工程学报,2013,32(2):333−342.
LI Zhenlei,DOU Linming,CAI Wu,et al. Fault-pillar induced rock burst mechanism of thick coal seam in deep mining[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(2):333−342.
|
[8] |
马斌文,邓志刚,赵善坤,等. 钻孔卸压防治冲击地压机理及影响因素分析[J]. 煤炭科学技术,2020,48(5):35−40.
MA Binwen,DENG Zhigang,ZHAO Shankun,et al. Analysis on the mechanism and influencing factors of drilling pressure relief to prevent rock burst[J]. Coal Science and Technology,2020,48(5):35−40.
|
[9] |
王 猛,王襄禹,肖同强. 深部巷道钻孔卸压机理及关键参数确定方法与应用[J]. 煤炭学报,2017,42(5):1138−1145.
WANG Meng,WANG Xiangyu,XIAO Tongqiang. Borehole destressing mechanism and determination method of its key parameters in deep roadway[J]. Journal of China Coal Society,2017,42(5):1138−1145.
|
[10] |
贾传洋,蒋宇静,张学朋,等. 大直径钻孔卸压机理室内及数值试验研究[J]. 岩土工程学报,2017,39(6):1115−1122.
JIA Chuanyang,JIANG Yujing,ZHANG Xuepeng,et al. Laboratory and numerical experiments on pressure relief mechanism of large-diameter boreholes[J]. Chinese Journal of Geotechnical Engineering,2017,39(6):1115−1122.
|
[11] |
齐燕军,靖洪文,孟 波,等. 卸压孔尺寸效应的模型试验研究[J]. 采矿与安全工程学报,2018,35(3):538−544.
QI Yanjun,JING Hongwen,MENG Bo,et al. Experimental modelling on size effect of pressure relief hole[J]. Journal of Mining & Safety Engineering,2018,35(3):538−544.
|
[12] |
窦林名,何学秋,REN Ting,等. 动静载叠加诱发煤岩瓦斯动力灾害原理及防治技术[J]. 中国矿业大学学报,2018,47(1):48−59.
DOU Linming,HE Xueqiu,REN Ting,et al. Mechanism of coal-gas dynamic disasters caused by the superposition of static and dynamic loads and its control technology[J]. Journal of China University of Mining and Technology,2018,47(1):48−59.
|
[13] |
姜耀东,赵毅鑫. 我国煤矿冲击地压的研究现状:机制、预警与控制[J]. 岩石力学与工程学报,2015,34(11):2188–2204.
JIANG Yaodong,ZHAO Yixin. State of the art:investigation on mechanism,forecast and control of coal bumps in China[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2188–2204.
|
[14] |
潘一山,代连朋. 煤矿冲击地压发生理论公式[J]. 煤炭学报,2021,46(3):789−799.
PAN Yishan,DAI Lianpeng. Theoretical formula of rock burst in coal mines[J]. Journal of China Coal Society,2021,46( 3):789−799.
|
[15] |
杨圣奇,刘相如,李玉寿. 单轴压缩下含孔洞裂隙砂岩力学特性试验分析[J]. 岩石力学与工程学报,2012,31(S2):3539−3546.
YANG Shengqi,LIU Xiangru,LI Yushou. Experimental analysis of mechanical behavior of sandstone containing hole and fissure under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(S2):3539−3546.
|
[16] |
李地元,李夕兵,李春林,等. 单轴压缩下含预制孔洞板状花岗岩试样力学响应的试验和数值研究[J]. 岩石力学与工程学报,2011,30(6):1198−1206.
LI Diyuan,LI Xibing,LI Chunlin,et al. Experimental and numerical studies of mechanical response of plate-shape granite samples containing prefabricated holes under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(6):1198−1206.
|
[17] |
刘招伟,李元海. 含孔洞岩石单轴压缩下变形破裂规律的实验研究[J]. 工程力学,2010,27(8):133−139.
LIU Zhaowei,LI Yuanhai. Experimental investigation on the deformation and crack behavior of rock specimen with a hole undergoing uniaxial compressive load[J]. Engineering Mechanics,2010,27(8):133−139.
|
[18] |
周子龙,孙景楠,王海泉,等. 冲击载荷作用下孔洞花岗岩的应变演化及破坏特征[J]. 中南大学学报(自然科学版),2021,52(3):681−692.
ZHOU Zilong,SUN Jingnan,WANG Haiquan,et al. Strain evolution and failure characteristics of granite with cavities under impact load[J]. Journal of Central South University(Science and Technology),2021,52(3):681−692.
|
[19] |
王爱文,高乾书,潘一山,等. 预制钻孔煤样冲击倾向性及能量耗散规律[J]. 煤炭学报,2021,46(3):959−972.
WANG Aiwen,GAO Qianshu,PAN Yishan,et al. Bursting liability and energy dissipation laws of prefabricated borehole coal samples[J]. Journal of China Coal Society,2021,46(3):959−972.
|
[20] |
李地元,高飞红,刘 濛,等. 动静组合加载下含孔洞层状砂岩破坏机制探究[J]. 岩土力学,2021,42(8):2127–2140.
LI Diyuan,GAO Feihong,LIU Meng. Research on failure mechanism of stratified sandstone with pre-cracked hole under combined static-dynamic loads[J]. Rock and Soil Mechanics,2021,42(8); 2127–2140.
|
[21] |
戴 兵,罗鑫尧,单启伟,等. 循环冲击荷载下含孔洞岩石损伤特性与能量耗散分析[J]. 中国安全科学学报,2020,30(7):69−77.
DAI Bing,LUO Xinyao,SHAN Qiwei,et al. Analysis on damage characteristics and energy dissipation of rock with a single hole under cyclic impact loads[J]. China Safety Science Journal,2020,30(7):69−77.
|
[22] |
TAO M,MA A,CAO W,et al. Dynamic response of pre-stressed rock with a circular cavity subject to transient loading[J]. International Journal of Rock Mechanics and Mining Sciences,2017,99:1−8. doi: 10.1016/j.ijrmms.2017.09.003
|
[23] |
ZHOU Y,XIA K,LI X,et al. Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials[J]. International Journal of Rock Mechanics and Mining Sciences,2011,49(1):105−112.
|
[24] |
吴拥政,孙卓越,付玉凯. 三维动静加载下不同长径比煤样力学特性及能量耗散规律[J]. 岩石力学与工程学报,2022,41(5):877–888.
WU Yongzheng,SUN Zhuoyue,FU Yukai. Mechanical properties and energy dissipation laws of coal samples with different length-to-diameter ratios under 3D coupled static and dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(5):877–888.
|
[25] |
ZHAGN X P,WONG L N Y. Cracking processes in rock-like material containing a single flaw under uniaxial compression:a numerical study based on parallel bonded-particle model approach[J]. Rock Mechanics and Rock Engineering,2012,45(5):711−737.
|
[26] |
孙卓越,吴拥政,孙久政,等. 三维动静加载下煤样动态变形模量长径比效应[J]. 采矿与岩层控制工程学报,2022,4(4):043021.
SUN Zhuoyue,WU Yongzheng,SUN Jiuzheng,et al. Length-to-diameter ratio effect of dynamic deformation modulus of coal samples under three-dimensional dynamic and static loading[J]. Journal of Mining and Strata Control Engineering,2022,4(4):043021.
|
[27] |
翟新献,翟俨伟,刘勤裕,等. 冲击作用下含水煤样能量吸收和耗散规律及本构关系研究[J]. 振动与冲击,2023,42(6):202−211.
ZHAI Xinxian,ZHAI Yanwei,LIU Qinyu,et al. Energy absorption and dissipation and the constitutive relation of water-bearing coal specimens under impact load[J]. Journal of Vibration and Shock,2023,42(6):202−211.
|
[28] |
杨仁树,李炜煜,方士正,等. 波阻抗对岩石动力学特性影响的模拟试验研究[J]. 振动与冲击,2020,39(3):178−185.
YANG Renshu,LI Weiyu,FANG Shizheng,et al. Tests for effects of wave impedance on rock’s dynamic performance[J]. Journal of Vibration and Shock,2020,39(3):178−185.
|
[29] |
潘俊锋,闫耀东,马宏源,等. 一次成孔300 mm煤层大直径钻孔防冲效能试验[J]. 采矿与岩层控制工程学报,2022,4(5):053913.
PAN Junfeng,YAN Yaodong,MA Hongyuan,et al. Using 300 mm diameter boreholes for coal burst prevention a case study[J]. Journal of Mining and Strata Control Engineering,2022,4(5):053013.
|
1. |
霍超,郭海晓,王蕾,谢志清,潘海洋,徐强,张争光,王丹凤,王丹丹. 双碳背景下中国深部煤层气勘探开发研究进展. 科学技术与工程. 2025(14): 5705-5720 .
![]() | |
2. |
郭广山,刘彦成,赵刚,陈朝晖,李陈,康丽芳,王宇川,王佳楠. 神府南区深部煤层气水平井产能地质-工程主控因素. 煤田地质与勘探. 2025(05): 65-80 .
![]() |