Citation: | ZHAO Pengxiang,ZHUO Risheng,LI Shugang,et al. Research on the evolution mechanism of the topological relationship of the property parameters of the mining overburden rock pressure relief gas migration channel[J]. Coal Science and Technology,2024,52(2):135−149. DOI: 10.12438/cst.2023-1784 |
Many factors combine to influence the spatial distribution characteristics of overburden fracture during the increasingly intense mining process in coal mines. The characteristics of overburden fracture distribution has important significance in guiding the gas management in liberated layer mining. Several sets of two-dimensional physical similarity simulation experiments were carried out to investigated the distribution characteristics of overburden fracture network and the property parameters of the pressure relief gas storage and migration channels under different mining conditions (mining height, advancement speed, key layer upon layer and coal seam inclination). The topological network with geometric and fissure parameters was obtained. The topological transformation of the real stem system was simplified based on the theory of complex network evolution, and the evolution characteristics of the stem system structure and factor nodes of the transportation and storage channel was analyzed combined with the complex network characteristic parameters. The influencing factors of the overburden fissure network stem system was quantitatively described, and a matrix and model of the network structure of pressure relief gas transport and storage channel were established. The results indicated that, the development range, through degree, and fractal dimension of pressure relief gas migration and storge channel expand with the increase of mining height, key layer position, and coal seam dip angle. However, the development range shown a decreasing trend with the acceleration of advancing speed. The increase in mining height had the greatest impact on the amount of separation, with a 146.9% increase at 6 m mining height compared to 4 m. The variation in fracture density was mainly influenced by the dip angle of the coal seam, and was less influenced by the advancing speed. Arranging the boreholes in high-density areas (density > 4.7 pieces/m) can effectively act as a gas retention. The research results can further optimize the arrangement parameters of gas extraction boreholes under the influence of different factors, improve the efficiency of gas extraction, so as to ensure the safe and efficient recovery of the working face, which is of certain practical significance for the realization of accurate and green gas extraction.
[1] |
许家林,秦 伟,轩大洋,等. 采动覆岩卸荷膨胀累积效应[J]. 煤炭学报,2020,45(1):35−43.
XU Jialin,QIN Wei,XUAN Dayang,et al. Accumulative effect of overburden strata expansion induced by stress relief[J]. Journal of China Coal Society,2020,45(1):35−43.
|
[2] |
杨达明,郭文兵,谭 毅,等. 高强度开采覆岩岩性及其裂隙特[J]. 煤炭学报,2019,44(3):786−795.
YANG Daming,GUO Wenbing,TAN Yi,et al. Lithology and fissure characteristics of overburden in high-intensity mining[J]. Journal of China Coal Society,2019,44(3):786−795.
|
[3] |
黄庆享,杜君武,侯恩科,等. 浅埋煤层群覆岩与地表裂隙发育规律和形成机理研究[J]. 采矿与安全工程学报,2019,36(1):7−15.
HUANG Qingxiang,DU Junwu,HOU Enke,et al. Research on overburden and ground surface cracks distribution and formation mechanism in shallow coal seams group mining[J]. Journal of Mining & Safety Engineering,2019,36(1):7−15.
|
[4] |
RAN Q C,LIANG Y P,ZOU Q L, et al. Characteristics of mining-induced fractures under inclined coal seam group multiple mining and implications for gas migration[J]. Natural Resources Research 2023,32(3):1481−1501.
|
[5] |
侯恩科,袁 峰,王双明,等. 导水裂隙带发育特征地震识别方[J]. 煤炭学报,2023,48(1):414−429.
HOU Enke,YUAN Feng,WANG Shuangming,et al. Seismic identification and development characteristics of water conducting fissure zone in goaf[J]. Journal of China Coal Society,2023,48(1):414−429.
|
[6] |
袁 亮,张 通,张庆贺,等. 双碳目标下废弃矿井绿色低碳多能互补体系建设思考[J]. 煤炭学报,2022,47(6):2131−2139.
YUAN Liang,ZHANG Tong,ZHANG Qinghe,et al. Construction of green,low-carbon and multi-energy complementary system for abandoned mines under global carbon neutrality[J]. Journal of China Coal Society,2022,47(6):2131−2139
|
[7] |
周世宁. 瓦斯在煤层中流动的机理[J]. 煤炭学报,1990,15(1):61−67.
ZHOU Shining. Mechanisms of gas flow in coal seams[J]. Journal of China Coal Society,1990,15(1):61−67.
|
[8] |
TIEN J. Longwall caving in thick seams[J]. Coal Age,1998,103(4):52−61.
|
[9] |
JHA S N,KARMAKAR S. Thick seam mining-some experience and exaltation. In:singh TN,Dhar BB editors[J]. Proceedings of the international symposium on thick seam mining,India:Dhanbad,Central Mining Research Station,1992:191−202.
|
[10] |
YASITLI N E,UNVER BAHTİYAR. 3D numerical modeling of longwall mining with top-coal caving[J]. International Journal of Rock Mechanics and Mining Sciences,2005,42(2):219−235. doi: 10.1016/j.ijrmms.2004.08.007
|
[11] |
RUTQVIST Jonny,STEPHANSSON Ove. The role of hydromechanical coupling in fractured rock engineering[J]. Hydrogeology Journal,2003,11(1):7−40. doi: 10.1007/s10040-002-0241-5
|
[12] |
XIE H P,GAO F. The mechanics of cracks and a statistical strength for rocks[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(3):477−488. doi: 10.1016/S1365-1609(99)00074-X
|
[13] |
SMYTH Michelle,BUCKLEY Michael J. Statistical analysis of the microlithotype sequences in the Bulli Seam,Australia and relevance to permeability for coal gas[J]. International Journal of Coal Geology. 1993,22:167−187.
|
[14] |
齐庆新,李晓璐,赵善坤. 煤矿冲击地压应力控制理论与实践[J]. 煤炭科学技术,2013,41(6):1−5.
QI Qingxin,LI Xiaolu,ZHAO Shankun. Theory and practices on stress control of mine pressure bumping[J]. Coal Science and Technology,2013,41(6):1−5.
|
[15] |
王永秀,毛德兵,齐庆新. 数值模拟中煤岩层物理力学参数确定的研究[J]. 煤炭学报,2003,28(6):593−597. doi: 10.3321/j.issn:0253-9993.2003.06.008
WANG Yongxiu,MAO Debing,QI Qingxin. Study on determination of mechanical of rock mass used in numerical simulation[J]. Journal of China Coal Society,2003,28(6):593−597. doi: 10.3321/j.issn:0253-9993.2003.06.008
|
[16] |
袁 亮. 深部采动响应与灾害防控研究进展[J]. 煤炭学报,2021,46(3):716−725.
YUAN Liang. Research progress of mining response and disaster prevention and control in deep coal mines[J]. Journal of China Coal Society,2021,46(3):716−725.
|
[17] |
姜振学,庞雄奇,曾溅辉. 油气优势运移通道的类型及其物理模拟实验研究[J]. 地学前缘,2005,12(4):507−516. doi: 10.3321/j.issn:1005-2321.2005.04.020
JIANG Zhenxue,PANG Xiongqi,ZENG Jianghui. Research on types of the dominant migration pathways and their physical simulation experiments[J]. Frontiers of Earth Science,2005,12(4):507−516. doi: 10.3321/j.issn:1005-2321.2005.04.020
|
[18] |
牛彦良. 海拉尔盆地潜山油藏油气沿不整合面、断层和砂体运移的控制因素[J]. 大庆石油地质与开发,2007,26(2):27−30. doi: 10.3969/j.issn.1000-3754.2007.02.007
NIU Yanliang. Controlling factors for hydrocarbon migration along unconformity surface,faults and sandbody in Hailar buried hill reservoirs[J]. Daqing Petroleum Geology and Development,2007,26(2):27−30. doi: 10.3969/j.issn.1000-3754.2007.02.007
|
[19] |
魏建平,秦恒洁,王登科,等. 含瓦斯煤渗透率动态演化模型[J]. 煤炭学报,2015,40(7):1555−1561.
WEI Jianping,QIN Hengjie,WANG Dengke,et al. Dynamic permeability model for coal containing gas[J]. Journal of China Coal Society,2015,40(7):1555−1561.
|
[20] |
李宏义,姜振学,庞雄奇. 柴北缘油气运移瓦斯运移通道特征及其控油气作用[J]. 地球科学,2006,31(2):214−220. doi: 10.3321/j.issn:1000-2383.2006.02.011
LI Hongyi,JIANG Zhenxue,PANG Xiongqi. Dominant migration pathway and its control on oil-gas migration in the northern edge of Qaidam Basin[J]. Earth Science,2006,31(2):214−220. doi: 10.3321/j.issn:1000-2383.2006.02.011
|
[21] |
JIA B,WEI J P,WEN Z H,et al. The experimental research on response characteristics of coal samples under the uniaxial loading process[J]. Acoustical Physics,2017,63(6):716−722. doi: 10.1134/S1063771017060057
|
[22] |
张 勇,许力峰,刘珂铭,等. 采动煤岩体瓦斯通道形成机制及演化规律[J]. 煤炭学报,2012(9):1444−1450.
ZHANG Yong,XU Lifeng,LIU Keming,et al. Formation mechanism and evolution laws of gas channel in coal and rock[J]. Journal of China Coal Society,2012(9):1444−1450.
|
[23] |
张 勇,张 保,张春雷,等. 厚煤层采动裂隙发育演化规律及分布形态研究[J]. 中国矿业大学学报,2013,42(6):935−940. doi: 10.3969/j.issn.1000-1964.2013.06.007
ZHANG Yong,ZHANG Bao,ZHANG Chunlei,et al. Study on dynamic evolution rules and distribution pattern of mining induced fractures of thick coal seam[J]. Journal of China University of Mining and Technology,2013,42(6):935−940. doi: 10.3969/j.issn.1000-1964.2013.06.007
|
[24] |
王维华. 基于分形理论的采动覆岩裂隙渗透规律研究[J]. 煤炭技术,2015,34(9):208−211.
WANG Weihua. Study on fissure permeability rule of overlying strata influenced by mining based on fractal theory[J]. Coal Technology,2015,34(9):208−211.
|
[25] |
谢和平,鞠 杨,高明忠. 煤炭深部原位流态化开采的理论与技术体系[J]. 煤炭学报,2018,284(5):28−37.
XIE Heping,JU Yang,GAO Mingzhong. Theories and technologies for in-situ fluidized mining of deep underground coal resources[J]. Journal of China Coal Society,2018,284(5):28−37.
|
[26] |
李 立. 采动影响下煤体瓦斯宏细观尺度通道演化机理研究[D]. 北京. 中国矿业大学(北京),2016:35−48.
LI Li. Micro/macro study on mechanism of gas channel evolution in coal under the affect of mining[D]. Beijing. China University of Mining and Technology-Beijing,2016:35−48.
|
[27] |
肖 康,穆龙新,姜汉桥. 基于网络模型的油藏瓦斯运移通道形成微观机制[J]. 大庆石油地质与开发,2017,15(3):76−82.
XIAO Kang,MU Longxin,JIANG Hanqiao. Micro-mechanism of gas migration channel formation in reservoir based on network model[J]. Daqing Petroleum Geology and Development,2017,15(3):76−82.
|
[28] |
ZHAO P X,ZHUO R S,LI S G,et al. Greenhouse gas protection and control based upon the evolution of overburden fractures under coal mining:A review of methods,influencing factors,and techniques[J]. Energy,2023,284:129158−129176. doi: 10.1016/j.energy.2023.129158
|
[29] |
刘洪永,程远平,周红星. 综采长壁工作面推进速度对优势瓦斯通道的诱导与控制作用[J]. 煤炭学报,2015,40(4):809−815.
LIU Hongyong,CHENG Yuanping,ZHOU Hongxing. Guidance and control effect of drawing speed on excellent gas channel at fully mechanized longwall face[J]. Journal of China Coal Society,2015,40(4):809−815.
|
[30] |
ZHAO P X,ZHUO R S,LI S G,et al. Fractal characteristics of gas migration channels at different mining heights[J]. Fuel,2020,271:117479−117509. doi: 10.1016/j.fuel.2020.117479
|
[31] |
ZHAO P X,ZHUO R S,LI S G,et al. Fractal characteristics of methane migration channels in inclined coal seams[J]. Energy,2021,5:120127−120157.
|
[32] |
赵鹏翔,卓日升,李树刚,等. 综采工作面瓦斯运移优势通道演化规律采高效应研究[J]. 采矿与安全工程学报,2019,36(4):848−856.
ZHAO Pengxiang,ZHUO Risheng,LI Shugang,et al. Study on the effect of mining height on gas migration excellent channel at fully mechanized working face[J]. Journal of Mining and Safety Engineering,2019,36(4):848−856.
|
[33] |
赵红亮,陈剑平. 裂隙岩体三维网络流的渗透路径搜索[J]. 岩石力学与工程学报,2005,24(4):622−627. doi: 10.3321/j.issn:1000-6915.2005.04.013
ZHAO Hongliang,CHEN Jianping. Searching for seepage path of 3d network in fractured rock masses[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(4):622−627. doi: 10.3321/j.issn:1000-6915.2005.04.013
|
[34] |
王家臣,白希军,吴志山,等. 坚硬煤体综放开采顶煤破碎块度的研究[J]. 煤炭学报,2000,25(3):238−242. doi: 10.3321/j.issn:0253-9993.2000.03.004
WANG Jiachen,BAI Xijun,WU Zhishan,et al. The research on the fractured blocks of the top coal in the longwall top coal caving technique of the hard coal seam[J]. Journal of China Coal Society,2000,25(3):238−242. doi: 10.3321/j.issn:0253-9993.2000.03.004
|
[35] |
王路军,曹志国,程建超,等. 煤矿地下水库坝基层间岩体破坏及突渗力学模型研究[J]. 煤炭学报,2023,48(3):1192−1208.
WANG Lujun,CAO Zhiguo,CHENG Jianchao,et al. Mechanical modeling of rock damage and sudden seepage between the base of underground water reservoir dams in coal mines[J]. Journal of China Coal Society,2023,48(3):1192−1208.
|
[36] |
蒋长宝,付银兰,王光淇. 水力压裂煤裂隙网络表征与造缝性能评估试验研究[J]. 煤炭科学技术,2023,51(6):62−71.
JIANG Changbao,FU Yinlan,WANG Guangqi. Experimental study on characterization hydraulic fracturing coal fracture network and evaluation of fracture forming performance[J]. Coal Science and Technology,2023,51(6):62−71.
|
[37] |
李波波,王斌,杨康,等. 煤岩孔裂隙结构分形特征及渗透率模型研究[J]. 煤炭科学技术,2021,49(2):226−231.
LI Bobo,WANG Bin,YANG Kang,et al. Study on fractal characteristics of coal and rock pore fissure structure and permeability model[J]. Coal Science and Technology,2021,49(2):226−231.
|
[38] |
王卫军, 马谕杰, 范 磊, 等. 双向极不等压软岩巷道围岩裂隙分布及变形机制研究[J/OL]. 煤炭学报: 1−16 [2023−11−10]. https://doi.org/10.13225/j.cnki.jccs.2023.0913.
WANG Weijun,MA Yujie,FAN Lei,et al. Study on fracturedis-tribution and deformation mechanism of surrounding rock in two-way extremely unequal pressure soft rock roadway[J/OL]. Journal of China Coal Society,1−16 [2023−11−10]. https://doi.org/10.13225/j.cnki.jccs.2023.0913.
|
[39] |
余伊河, 马立强, 张东升,等.长壁工作面采动覆岩层理开裂机理及侧向裂隙发育规律[J/OL]. 煤炭学报: 1−15[2023−11−10]. https://doi.org/10.13225/j.cnki.jccs.2022.1307.
YU Yihe,MA Liqiang,ZHANG Dongsheng,et al. Themechan-ism of bedding cracking and development laws of lateral fracturein overlying strata induced by longwall mining[J/OL]. Journal of China Coal Society,1−15[2023−11−10]. https://doi.org/10.13225/j.cnki.jccs.2022.1307.
|
[40] |
李 玮,孙文峰,唐 鹏,等. 基于拓扑结构的岩石裂缝网络表征方法[J]. 天然气工业,2017,37(6):22−27. doi: 10.3787/j.issn.1000-0976.2017.06.003
LI Wei,SUN Wenfeng,TANG Peng,et al. A method for rock fracture network characterization based on topological structure[J]. Natural Gas Industry,2017,37(6):22−27. doi: 10.3787/j.issn.1000-0976.2017.06.003
|
[41] |
张开仲,程远平,王 亮,等. 基于煤中瓦斯赋存和运移方式的孔隙网络结构特征表征[J]. 煤炭学报,2022,47(10):3680−3694.
ZHANG Kaizhong,CHENG Yuanping,WANG Liang,et al. Pore network structure characterization based on gas occurrence and migration in coal[J]. Journal of China Coal Society,2022,47(10):3680−3694.
|
[42] |
刘嘉英,周 伟,姬 翔,等. 基于细观拓扑结构演化的颗粒材料剪胀性分析[J]. 力学学报,2022,54(3):707−718.
LIU Jiaying,ZHOU Wei,JI Xiang, et al. Dilatancy analysis of granular materials based on mesoscopic topological evolutions[J] Journal of Mechanics,2022,54(3):707−718.
|
[43] |
鞠金峰,许家林,王庆雄. 大采高采场关键层 “悬臂梁” 结构运动型式及对矿压的影响[J]. 煤炭学报,2011,36(12):2115−2120.
JU Jinfeng,XU Jialin,WANG Qingxiong. Cantilever structure moving type of key strata and its influence on ground pressure in large mining height workface[J]. Journal of China Coal Society,2011,36(12):2115−2120.
|
[44] |
赵鹏翔, 王玉龙, 李树刚,等.倾斜厚煤层仰斜综采面覆岩瓦斯缓渗区分域方法及分形特征研究[J/OL]. 煤炭科学技术: 1−13[2023−11−10]. https://doi.org/10.13199/j.cnki.cst.2022-1444.
ZHAO Pengxiang,WANG Yulong,LI Shugang,et al. Study onthe division method and fractal characteristics of overburden gasslow permeability zone in up-dip fully mechanized face ofin-clined thick coal seam[J/OL]. Coal Science and Technology,1−13[2023−11−10]. https://doi.org/10.13199/j.cnki.cst.2022-1444.
|
[45] |
黄炳香,刘长友,许家林. 采动覆岩破断裂隙的贯通度研究[J]. 中国矿业大学学报,2010,39(1):45−49.
HUANG Bingxiang,LIU Changyou,XU Jialin. Study on the penetration of fractured fissures in mining overburden[J]. Journal of China University of Mining and Technology,2010,39(1):45−49.
|
[46] |
王羽扬,李 剑,李元林,等. 岩溶区顶板沉降特点及覆岩裂隙分形维数变化研究[J]. 采矿与安全工程学报,2023,40(4):679−690.
WANG Yuyang,LI Jian,LI Yuanlin,et al. Study on the settlement characteristics of roof in karst area and the change of fractal dimension of overlying rock fracture[J]. Journal of Mining and Safety Engineering,2023,40(4):679−690.
|
[47] |
司俊鸿,李 潭,胡 伟,等. 采空区多孔介质等效孔隙网络拓扑结构表征算法研究[J]. 华北科技学院学报,2022,19(1):1−6.
SI Junhong,LI Tan,HU Wei,et al. Research on characterization algorithm of equivalent pore network topology structure of porous media in goaf[J]. Journal of North China University of Science and Technology,2022,19(1):1−6.
|
[48] |
陈小前,赵 勇,霍森林,等. 多尺度结构拓扑优化设计方法综述[J]. 航空学报,2023,44(15):25−60.
CHEN Xiaoqian,ZHAO Yong,HUO Senlin, et al. A review of topology optimization design methods for multi-scale structures[J]. Journal of Aeronautics,2023,44(15):25−60.
|
1. |
刘佳佳,李元隆,高建良,王丹,张云龙. 超临界CO_2脉动作用对低阶煤微观-宏观结构损伤演化特征. 煤炭科学技术. 2025(02): 190-199 .
![]() | |
2. |
傅师贵,刘泽功,常帅,杨帅,张健玉,乔国栋,张鑫. 深井高瓦斯低渗煤层深孔聚能爆破增透试验研究. 煤炭科学技术. 2025(05): 158-173 .
![]() | |
3. |
胡登卫. 可控冲击波煤层致裂增透效果研究. 采矿技术. 2024(03): 296-301 .
![]() |