Advance Search

WANG Hongwei,LI Chao,LIANG Wei,et al. Path planning of wheeled coal mine rescue robot based on improved A* and potential field algorithm[J]. Coal Science and Technology,2024,52(8):159−170

. DOI: 10.12438/cst.2023-1735
Citation:

WANG Hongwei,LI Chao,LIANG Wei,et al. Path planning of wheeled coal mine rescue robot based on improved A* and potential field algorithm[J]. Coal Science and Technology,2024,52(8):159−170

. DOI: 10.12438/cst.2023-1735

Path planning of wheeled coal mine rescue robot based on improved A* and potential field algorithm

Funds: 

Basic Research Project of Shanxi Province, No. 202203021222082; Shanxi Province bidding project (20201101008); Key Research and Development Program of Shanxi Province(202102100401017)

More Information
  • Received Date: November 20, 2023
  • Available Online: July 26, 2024
  • Coal mine rescue robots perform search and rescue tasks in unstructured underground tunnel environments. Traditional path planning algorithms may encounter issues such as low efficiency, non-optimal paths, and poor smoothness when applied to search spaces that are large or complex. Additionally, tunnels feature complex environmental characteristics such as intersections, where robots are prone to deviating from preset routes or scraping against tunnel walls. To address these challenges and enhance the navigation accuracy of robots, improvements to the path planning algorithm for wheeled coal mine rescue robots are proposed: ① The heuristic global path planning A* algorithm is enhanced by employing layered neighborhood search and pruning techniques to optimize the search process. The cost function is refined to better balance the influence of actual cost and heuristic cost, thus more accurately assessing the cost of each node, adapting to real situations, reducing computational complexity, and smoothing the path using B-spline methods. ② The Random Sample Consensus (RANSAC) fitting algorithm is utilized to construct a geometric model of coal mine tunnel walls, facilitating the extraction of feature point coordinates of intersections for inclusion in the planning system. The path is optimized using the local support property of B-spline basis functions. When additional path optimization points are added subsequently, only the shape of the curve in the corresponding interval is affected, leaving the rest of the path unaffected. ③ A comprehensive local force field is established based on the constructed environmental geometric model and extracted feature points. Adjustment coefficients are introduced to optimize the distribution of the force field, and motion control is achieved using the Particle Swarm Optimization (PSO) optimized PID (Proportion Integral Differential) algorithm, enhancing the robot's adaptability to complex environments such as tunnel intersections. The feasibility of the algorithm principles and applications is validated through MATLAB and ROS (Robot Operating System) simulations. Experimental results demonstrate that the proposed method can realize functions such as path planning and autonomous driving in complex intersection environments.

  • [1]
    谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报,2019,44(5):1283−1305.

    XIE Heping. Research review of the state key research development program of China:deep rock mechanics and mining theory[J]. Journal of China Coal Society,2019,44(5):1283−1305.
    [2]
    张吉雄,鞠杨,张强,等. 矿山生态环境低损害开采体系与方法[J]. 采矿与岩层控制工程学报,2019,1(1):013515.

    ZHANG Jixiong,JU Yang,ZHANG Qiang,et al. Low ecological environment damage technology and method in coal mines[J]. Journal of Mining and Strata Control Engineering,2019,1( 1):013515.
    [3]
    李猛,张吉雄,邓雪杰,等. 含水层下固体充填保水开采方法与应用[J]. 煤炭学报,2017,42(1):127−133.

    LI Meng,ZHANG Jixiong,DENG Xuejie,et al. Method of water protection based on solid backfill mining under water bearing strata and its application[J]. Journal of China Coal Society,2017,42(1):127−133.
    [4]
    李达. 厚煤层残煤复采区掘进大巷安全影响因素分析及评价[J]. 煤炭工程,2023,55(7):115−119.

    LI Da. Analysis and evaluation of safety influencing factors for excavation of main roadway in thick coal seam remining area[J]. Coal Engineering,2023,55(7):115−119.
    [5]
    石宏民. 煤矿巷道履带式巡检机器人系统设计[J]. 机电工程技术,2022,51(6):112−115. doi: 10.3969/j.issn.1009-9492.2022.06.026

    SHI Hongmin. Design of track inspection robot system in coal mine roadway[J]. Mechanical & Electrical Engineering Technology,2022,51(6):112−115. doi: 10.3969/j.issn.1009-9492.2022.06.026
    [6]
    李森,王峰,刘帅,等. 综采工作面巡检机器人关键技术研究[J]. 煤炭科学技术,2020,48(7):218−225.

    LI Sen,WANG Feng,LIU Shuai,et al. Study on key technology of patrol robots for fully-mechanized mining face[J]. Coal Science and Technology,2020,48(7):218−225.
    [7]
    聂珍,马宏伟. 煤矿巡检机器人巷道气体环境智能检测系统设计[J]. 工矿自动化,2020,46(6):17−22.

    NIE Zhen,MA Hongwei. Design of intelligent detection system of gas environment in roadway of coal mine inspection robot[J]. Industry and Mine Automation,2020,46(6):17−22.
    [8]
    武俊. 煤矿机器人关键共性技术与发展探讨[J]. 工矿自动化,2023,49(S1):1−3.

    WU Jun. Discussion on key common technologies and development of coal mine robots[J]. Industry and Mine Automation,2023,49(S1):1−3.
    [9]
    刘庆运,杨华阳,刘涛,等. 基于激光雷达与深度相机融合的SLAM算法[J]. 农业机械学报,2023,54(11):29−38. doi: 10.6041/j.issn.1000-1298.2023.11.003

    LIU Qingyun,YANG Huayang,LIU Tao,et al. SLAM algorithm based on fusion of Lidar and depth camera[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(11):29−38. doi: 10.6041/j.issn.1000-1298.2023.11.003
    [10]
    杨春雨,张鑫. 煤矿机器人环境感知与路径规划关键技术[J]. 煤炭学报,2022,47(7):2844−2872.

    YANG Chunyu,ZHANG Xin. Key technologies of coal mine robots for environment perception and path planning[J]. Journal of China Coal Society,2022,47(7):2844−2872.
    [11]
    WANG H,LI C,LIANG W,et al. Adaptive autonomous navigation system for coal mine inspection robots:overcoming intersection challenges[J/OL]. Industrial Robot,2024(2024−06−24)[2024−07−19]. https://doi.org/10.1108/IR-11-2023-0295.
    [12]
    张捍东,郑睿,岑豫皖. 移动机器人路径规划技术的现状与展望[J]. 系统仿真学报,2005,17(2):439−443. doi: 10.3969/j.issn.1004-731X.2005.02.050

    ZHANG Handong,ZHENG Rui,CEN Yuwan. Present situation and future development of mobile robot path planning technology[J]. Journal of System Simulation,2005,17(2):439−443. doi: 10.3969/j.issn.1004-731X.2005.02.050
    [13]
    PATLE B K,PANDEY A,PARHI D R K,et al. A review:on path planning strategies for navigation of mobile robot[J]. Defence Technology,2019,15(4):582−606. doi: 10.1016/j.dt.2019.04.011
    [14]
    丁百川. 我国煤矿主要灾害事故特点及防治对策[J]. 煤炭科学技术,2017,45(5):109−114.

    DING Baichuan. Features and prevention countermeasures of major disasters occurred in China coal mine[J]. Coal Science and Technology,2017,45(5):109−114.
    [15]
    文志杰,景所林,宋振骐,等. 采场空间结构模型及相关动力灾害控制研究[J]. 煤炭科学技术,2019,47(1):52−61.

    WEN Zhijie,JING Suolin,SONG Zhenqi,et al. Study on coal face spatial structure model and control related dynamic disasters[J]. Coal Science and Technology,2019,47(1):52−61.
    [16]
    马旭伟,徐华龙. 基于策略的矿井水灾避灾路径动态规划[J]. 矿冶,2023,32(4):12−18. doi: 10.3969/j.issn.1005-7854.2023.04.003

    MA Xuwei,XU Hualong. Dynamic planning of mine water avoidance path based on strategy[J]. Mining and Metallurgy,2023,32(4):12−18. doi: 10.3969/j.issn.1005-7854.2023.04.003
    [17]
    马小陆,梅宏. 基于改进势场蚁群算法的移动机器人全局路径规划[J]. 机械工程学报,2021,57(1):19−27. doi: 10.3901/JME.2021.01.019

    MA Xiaolu,MEI Hong. Mobile robot global path planning based on improved ant colony system algorithm with potential field[J]. Journal of Mechanical Engineering,2021,57(1):19−27. doi: 10.3901/JME.2021.01.019
    [18]
    鲍久圣,张牧野,葛世荣,等. 基于改进A*和人工势场算法的无轨胶轮车井下无人驾驶路径规划[J]. 煤炭学报,2022,47(3):1347−1360.

    BAO Jiusheng,ZHANG Muye,GE Shirong,et al. Underground driverless path planning of trackless rubber tyred vehicle based on improved A* and artificial potential field algorithm[J]. Journal of China Coal Society,2022,47(3):1347−1360.
    [19]
    GAO Y,DAI Z,YUAN J. A multiobjective hybrid optimization algorithm for path planning of coal mine patrol robot[J/OL]. Computational Intelligence and Neuroscience,2022:9094572(2022−6−23)[2023−11−15]. https://doi.org/10.1155/2022/9094572.
    [20]
    林韩熙,向丹,欧阳剑,等. 移动机器人路径规划算法的研究综述[J]. 计算机工程与应用,2021,57(18):38−48. doi: 10.3778/j.issn.1002-8331.2103-0519

    LIN Hanxi,XIANG Dan,OUYANG Jian,et al. Review of path planning algorithms for mobile robots[J]. Computer Engineering and Applications,2021,57(18):38−48. doi: 10.3778/j.issn.1002-8331.2103-0519
    [21]
    栾添添,王皓,孙明晓,等. 基于动态变采样区域RRT的无人车路径规划[J]. 控制与决策,2023,38(6):1721−1729.

    LUAN Tiantian,WANG Hao,SUN Mingxiao,et al. Path planning of unmanned vehicle based on dynamic variable sampling area RRT[J]. Control and Decision,2023,38(6):1721−1729.
    [22]
    王洪斌,尹鹏衡,郑维,等. 基于改进的A*算法与动态窗口法的移动机器人路径规划[J]. 机器人,2020,42(3):346−353.

    WANG Hongbin,YIN Pengheng,ZHENG Wei,et al. Mobile robot path planning based on improved A* algorithm and dynamic window method[J]. Robot,2020,42(3):346−353.
    [23]
    刘成志,韩旭里,李军成. 三次均匀B样条扩展曲线的渐进迭代逼近法[J]. 计算机辅助设计与图形学学报,2019,31(6):899−910.

    LIU Chengzhi,HAN Xuli,LI Juncheng. Progressive-Iterative approximation by extension of cubic uniform B-spline curves[J]. Journal of Computer-Aided Design & Computer Graphics,2019,31(6):899−910.
    [24]
    RAGURAM R,CHUM O,POLLEFEYS M,et al. USAC:A universal framework for random sample consensus[J]. IEEE transactions on pattern analysis and machine intelligence,2012,35(8):2022−2038.
    [25]
    MACT T,COPOT C,TRAN D T,et al. Heuristic approaches in robot path planning:a survey[J]. Robotics and Autonomous Systems,2016,86:13−28. doi: 10.1016/j.robot.2016.08.001
    [26]
    ZHANG Y,WANG S,JI G. A comprehensive survey on particle swarm optimization algorithm and its applications[J/OL]. Mathematical problems in engineering,2015:931256(2015−10−07)[2023−11−15]. https://doi.org/10.1155/2015/931256.
  • Cited by

    Periodical cited type(2)

    1. 孙朋, 刘春辉, 施向东, 张恒恒, 查文珂. 改进A*算法的移动机器人路径规划研究. 黑龙江工程学院学报. 2025(03)
    2. 赵克顿,赵洪华,陈志良,赵建,赵丰瑞,韩青,张荣成,周涛,李钰茹. 矿用多功能机器人设计与应用研究. 煤炭工程. 2025(01): 212-217 .

    Other cited types(6)

Catalog

    Article views (148) PDF downloads (61) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return