LI Shugang,ZHANG Jingfei,LIN Haifei,et al. Thoughts on the development path of coal and gas co-mining technology in dual carbon strategy[J]. Coal Science and Technology,2024,52(1):138−153
. DOI: 10.12438/cst.2023-1689Citation: |
LI Shugang,ZHANG Jingfei,LIN Haifei,et al. Thoughts on the development path of coal and gas co-mining technology in dual carbon strategy[J]. Coal Science and Technology,2024,52(1):138−153 . DOI: 10.12438/cst.2023-1689 |
The construction of China’s ecological civilization has entered a critical period in which carbon reduction is the key strategic direction since the “dual carbon” goal was proposed. Coal’s status as the least expensive energy source will be unchanged in the short term. CH4-CO2 coordinated emission reduction is the core of the convert from “dual control” of energy consumption to “dual control” of total carbon emissions and intensity. On the basis of accurately analyzing the challenges of CH4-CO2 dual carbon emission reduction in coal mines at the stage of carbon peak and carbon neutrality, the development of coal and gas co-mining technology in the dual carbon strategy has been clarified to be combined with the core principles of current demand-technical research-policy drive, the development path of coal and gas co-mining technology in the dual carbon strategy is formulated, and the key technical issues are discussed. At the peak stage of carbon emission, CH4 emission reduction is based on the perspective of emission source control. The core is the key technology for carbon emission reduction in the whole cycle of gas extraction and utilization, including the targeted and accurate extraction technology in gas-rich areas, the permeability-enhancement, replacement and flow-increasement extraction by injecting gas in low-permeability coal seams, the gas escape channel plugging and carbon reduction technology in closed mines, and the integrated technology of gas enrichment-concentration-utilization. The purpose is to greatly improve the efficiency of high-concentration gas extraction and utilization and to reduce the carbon emission from low-concentration and ventilated gas. CO2 emission reduction is centered on the “CCUS + ecological carbon sink” region-wide negative carbon emission technology to further absorb flue gas and pure CO2 emissions, including CO2 storage in coal seams, industrial solid waste goaf filling synergistic CO2 geological storage, soil-surface-atmosphere anomaly monitoring and ecological carbon sink technology in coal mine carbon storage areas, etc. The core task of the carbon neutralization stage is to achieve CH4-CO2 (near) zero carbon emission. CO2 emission reduction should be transformed from a technical research demonstration project to a large-scale application stage, and establishing an intelligent monitoring and dynamic control technology system for CH4-CO2 emission from coal mine in the whole life cycle to realize the in-deep matching between monitoring and control technology means and carbon emission links, and the in-deep docking between the monitoring-control cloud platform of carbon emission and the global monitoring-control system of coal mines. Finally, the insights and thoughts is put forward on the green and low-carbon development of the future coal and gas co-mining system. ① Continue to deepen the coal mine CH4 zero emission technology model of “efficient and accurate extraction + full-concentration cascade utilization”. ② Continue to tackle the CO2 zero emission technology system of “CO2 engineering storage + ecological carbon sinks”. ③ Actively exploring the comprehensive solution of “zero carbon wisdom park” in coal mines, and forming a policy support system for carbon emission reduction in coal mines that emphasizes both incentive and pushback.
[1] |
ROGELJ J,DEN ELZEN M,HöHNE N,et al. Paris Agreement climate proposals need a boost to keep warming well below 2 ℃[J]. Nature,2016,534(7609):631−639. doi: 10.1038/nature18307
|
[2] |
陈 浮,王思遥,于昊辰,等. 碳中和目标下煤炭变革的技术路径[J]. 煤炭学报,2022,47(4):1452−1461.
CHEN Fu,WANG Siyao,YU Haochen,et al. Technological innovation paths of coal industry for achieving carbon neutralization[J]. Journal of China Coal Society,2022,47(4):1452−1461.
|
[3] |
王国法,任世华,庞义辉,等. 煤炭工业“十三五”发展成效与“双碳”目标实施路径[J]. 煤炭科学技术,2021,49(9):1−8.
WANG Guofa,REN Shihua,PANG Yihui. et al. Development achievements of China’s coal industry during the 13th Five-Year Plan period and implementation path of “dual carbon” target[J]. Coal Science and Technology,2021,49(9):1−8.
|
[4] |
刘 峰,曹文君,张建明,等. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报,2021,46(1):1−15.
LIU Feng,CAO Wenjun,ZHANG Jianming,et al. Current technological innovation and development direction of the 14th Five-Year Plan period in China coal industry[J]. Journal of China Coal Society,2021,46(1):1−15.
|
[5] |
刘 峰,郭林峰,赵路正. 双碳背景下煤炭安全区间与绿色低碳技术路径[J]. 煤炭学报,2022,47(1):1−15.
LIU Feng,GUO Linfeng,ZHAO Luzheng. Research On coal safety range and green low carbon technology path under the dual carbon background[J]. Journal of China Coal Society,2022,47(1):1−15.
|
[6] |
魏一鸣,余碧莹,唐葆君,等. 中国碳达峰碳中和路径优化方法[J]. 北京理工大学学报(社会科学版),2022,24(4):3−12.
WEI Yiming,YU Biying,TANG Baojun,et al. Optimization Method for China’s Carbon Peak and Carbon Neutrality Roadmap[J]. Journal of Beijing Institute of Technology (Social Science Edition ),2022,24(4):3−12.
|
[7] |
王双明,申艳军,宋世杰,等. “双碳”目标下煤炭能源地位变化与绿色低碳开发[J]. 煤炭学报,2023,48(7):2599−2612.
WANG Shuangming,SHEN Yanjun,SONG Shijie,et al. Change of coal energy status and green and low-carbon development under the ' dual carbon’ goal[J]. Journal of China Coal Society,2023,48(7):2599−2612.
|
[8] |
国际能源署(IEA). 世界能源展望(2023) [R]. 华盛顿:国际能源署,2023.
International Energy Agency (IEA). World energy outlook (2023) [R]. Washington:IEA,2023.
|
[9] |
国际能源署(IEA). 2022年二氧化碳排放报告 [R]. 华盛顿:国际能源署,2022.
International Energy Agency (IEA). 2022 carbon dioxide emissions report [R]. Washington:IEA,2022.
|
[10] |
ZHANG J,LIN H,LI S,et al. Accurate gas extraction(AGE) under the dual-carbon background:green low-carbon development pathway and prospect[J]. Journal of Cleaner Production,2022:134372.
|
[11] |
谢和平,任世华,谢亚辰,等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报,2021,46(7):2197−2211.
XIE Heping,REN Shihua,XIE Yachen,et al. Development opportunities of the coal industry towards the goal of carbon neutrality[J]. Journal of China Coal Society,2021,46(7):2197−2211.
|
[12] |
袁 亮,张 通,张 贺,等. 双碳目标下废弃地矿井绿色低碳环保互动体系建设思考[J] . 煤炭学报,2022,47 (6):2131−2139.
YUAN Liang,ZHANG Tong,ZHANG Qinghe,et al. Construction of green,low carbon and multi-energy complementary system for abandoned mines under global carbon neutrality [J]. Journal of China Coal Society,2022,47 (6):2131−2139.
|
[13] |
王双明,刘 浪,赵玉娇,等. “双碳”目标下赋煤区新能源开发−未来煤矿转型升级新路径[J]. 煤炭科学技术,2023,51(1):59−79.
WANG Shuangming,LIU Lang,ZHAO Yujiao,et al. New energy exploitation in coal seams under the target of “double carbon”:a new path for transformation and upgrading of coal mines in the future [J]. Coal Science and Technology. 2023,51 (1):59−79.
|
[14] |
卞正富,伍小杰,周跃进,等. 煤炭零碳开采技术[J]. 煤炭学报,2023,48(7):2613−2625.
BIAN Zhengfu,WU Xiaojie,ZHOU Yuejin,et al. Coal mining technology with net zero carbon emission[J]. Journal of China Coal Society,2023,48(7):2613−2625.
|
[15] |
桑树勋,刘世奇,朱前林,等. CO2地质封存潜力与资源协同的技术基础研究拓展[J]. 煤炭学报,2023,48 (7):2700−2716.
SANG Shuxun,LIU Shiqi,ZHU Qianlin,et al. Research progress on technical basis of synergy between CO2 geological storage potential and energy resources [J]. Journal of China Coal Society. 2023,48 (7):2700−2716.
|
[16] |
苏现波,赵伟仲,王 乾,等. 煤层气井地联合抽采全过程低负碳减排关键技术研究进展[J]. 煤炭学报,2023,48(1):335−356.
SU Xianbo,ZHAO Weizhong,WANG Qian,et al. Conception of key technologies for low negative carbon emission reduction process in the coal bed methane development from the CBM well, coal mine and goaf[J]. Journal of China Coal Society,2023,48(1):335−356.
|
[17] |
李树刚,张静非,尚建选,等. 双碳目标下煤气同采技术体系构想及内涵[J]. 煤炭学报,2022,47(4):1416−1429.
LI Shugang,ZHANG Jingfei,SHANG Jianxuan,et al. Conception and connotation of coal and gas co-extraction technology system under the goal of carbon peak and carbon neutrality[J]. Journal of China Coal Society,2022,47(4):1416−1429.
|
[18] |
金智新,曹孟涛,王宏伟. “中等收入”与新“双控”背景下煤炭行业转型发展新机遇[J]. 煤炭科学技术,2023,51(1):45−58.
JIN Zhixin,CAO Mengtao,WANG Hongwei. New opportunities for coal industry transformation and development under the background of the level of a moderately developed country and a new “dual control”system [J]. Coal Science and Technology, 2023,51 (1) :45−58.
|
[19] |
刘文革,徐 鑫,韩甲业,等. 碳中和目标下煤矿甲烷减排趋势模型及关键技术[J]. 煤炭学报,2022,47(1):470−479.
LIU Wenge,XU Xin,HAN Jiaye,et al. Trend model and key technology of coal mine methane emission reduction aiming for the carbon neutrality[J]. Journal of China Coal Society,2022,47(1):470−479.
|
[20] |
梁运培,李左媛,朱拴成,等. 关闭/废弃煤矿甲烷排放研究现状及减排对策[J]. 煤炭学报,2023,48(4):1645−1660.
LIANG Yunpei,LI Zuoyuan,ZHU Shuancheng,et al. Research status and reduction strategies of methane from closed/ abandoned coal deposits[J]. Journal of China Coal Society,2023,48(4):1645−1660.
|
[21] |
桑树勋,刘世奇,韩思杰,等. 中国煤炭甲烷管控与减排潜力[J]. 煤田地质与勘探,2023,51(1):159−175.
SANG Shuxun,LIU Shiqi,HAN Sijie,et al. Coal methane control and its emission reduction potential in China[J]. Coal Geology & Exploration,2023,51(1):159−175.
|
[22] |
刁玉乾,檀国荣,丹美涵,等. 加快能源消费结构调整对我国低碳目标实现助力几何[C]//第一届全国碳中和与绿色发展大会,2021.
DIAO Yuqian,TAN Guorong,DAN Meihan,et al. Accelerate the adjustment of energy consumption structure to help China achieve low-carbon goals [C]//The First National Conference on Carbon Neutralization and Green Development,2021.
|
[23] |
邹才能,何东博,贾成业,等. 世界能源转型内涵,路径及其对碳中和的意义[J]. 石油学报,2021,42(2):233−247.
ZOU Caineng,HE Dongbo,JIA Chengy,et al. Connotation and pathway of world energy transition and its significance for carbon neutral[J]. Acta Petrolei Sinica,2021,42(2):233−247.
|
[24] |
PROUTY C,MOHEBBI S,ZHANG Q. Extreme weather events and wastewater infrastructure:a system dynamics model of a multi-level,socio-technical transition[J]. Science of the Total Environment,2020,714:136685. doi: 10.1016/j.scitotenv.2020.136685
|
[25] |
吕俊复,蒋 苓,柯希玮,等. 碳中和背景下循环流化床燃烧技术在中国的发展前景[J]. 煤炭科学技术,2023,51(1):514−522.
LYU Junfu,JIANG Ling,KE Xiwei,et al. Future of circulating fluidized bed combustion technology in China for carbon neutralization[J]. Coal Science and Technology,2023,51(1):514−522.
|
[26] |
赵蕴华,李维波,苑朋彬. 全球碳排放遥感监测相关论文的文献分析[J]. 中国科技资源导刊,2019,51(3):96−101. doi: 10.3772/j.issn.1674-1544.2019.03.015
ZHAO Yunhua,LI Weibo,YUAN Pengbin. Study of the paper literature with global carbon emissions monitoring[J]. China Science and Technology Resource Guide,2019,51(3):96−101. doi: 10.3772/j.issn.1674-1544.2019.03.015
|
[27] |
姚顺春,喻子彧,谭 超,等. 基于激光诱导击穿光谱法的燃煤电厂碳排放在线监测方法[P]. 中国:ZL110044852A,2019-07-23.
|
[28] |
曾安里,高雨青,金作龙. 基于遥感、卫星定位导航和无人机的三维空间碳排放监测系统[P]. 中国:ZL102591351A,2012-07-18.
|
[29] |
谢和平,王金华,王国法,等. 煤炭革命新理念与煤炭科技发展构想[J]. 煤炭学报,2018,43(5):1187−1197.
XIE Heping,WANG Jinhua,WANG Guofa,et al. New ideas of coal revolution and layout of coal science and technology development[J]. Journal of China Coal Society,2018,43(5):1187−1197.
|
[30] |
李树刚,刘李东,赵鹏翔,等. 倾斜厚煤层卸压瓦斯靶向区辨识及抽采关键技术[J]. 煤炭科学技术,2023,51(8):105−115.
LI Shugang,LIU Lidong,ZHAO Pengxiang,et al. Key technologies for extraction and identification of gas target area for pressure relief in inclined thick coal seam[J]. Coal Science and Technology,2023,51(8):105−115.
|
[31] |
林海飞,季鹏飞,孔祥国,等. 我国低渗煤层井下注气驱替增流抽采瓦斯技术进展及前景展望[J]. 煤炭学报,2023,48(2):730−749.
LIN Haifei,JI Pengfei,KONG Xiangguo,et al. Progress and prospect of gas extraction technology by underground gas injection displacement for increasing flow in low-permeability coal seam in China[J]. Journal of China Coal Society,2023,48(2):730−749.
|
[32] |
何学秋,田向辉,宋大钊. 煤层CO2安全封存研究进展与展望[J]. 煤炭科学技术,2022,50(1):212−219. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201021
HE Xueqiu,TIAN Xianghui,SONG Dazhao. Progress and expectation of CO2 sequestration safety in coal seams[J]. Coal Science and Technology,2022,50(1):212−219. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201021
|
[33] |
钱鸣高,缪协兴,许家林. 岩层控制中的关键层理论研究[J]. 煤炭学报,1996,21(3):2−7.
QIAN Minggao,MIAO Xiexing,XU Jianlin. Theoretical study of key stratum in ground control[J]. Journal of China Coal Society,1996,21(3):2−7.
|
[34] |
袁 亮,郭 华,沈宝堂,等. 低透气性煤层群煤与瓦斯共采中的高位环形裂隙体[J]. 煤炭学报,2011,36(3):357−365.
YUAN Liang,GUO Hua,SHEN Baotang,et al. Circular zone at longwall panel for efficient methane capture of multiple coal seams with low permeability[J]. Journal of China Coal Society,2011,36(3):357−365.
|
[35] |
李树刚,林海飞,赵鹏翔,等. 采动裂隙椭抛带动态演化及煤与甲烷共采[J]. 煤炭学报,2014,39(8):1455−1462.
LI Shugang,LIN Haifei,ZHAO Pengxiang,et al. Dynamic evolution of mining fissure elliptic paraboloid zone and extraction coal and gas[J]. Journal of China Coal Society,2014,39(8):1455−1462.
|
[36] |
林海飞,李树刚,成连华,等. 覆岩采动裂隙带动态演化模型的 实验分析[J]. 采矿与安全工程学报,2011,28(2):298−303.
LIN Haifei,LI Shugang,CHENG Lianhua,et al. Experimental analysis of dynamic evolution model of mining induced fissure zone in strata[J]. Journal of Mining & Safety Engineering,2011,28(2):298−303.
|
[37] |
丁 洋,朱 冰,李树刚,等. 高突矿井采空区卸压瓦斯精准辨识及高效抽采[J]. 煤炭学报,2021,46(11):3565−3577.
DING Yang,ZHU Bing,LI Shugang,et al. Accurate and efficient identification of drainage methane in outburst of high outburst mines[J]. Journal of China Coal Society,2021,46(11):3565−3577.
|
[38] |
赵鹏翔,张文进,李树刚,等. 高瓦斯厚煤层综采工作面推进速度影响下的瓦斯运–储区交叉融合机理[J]. 煤炭学报,2023,48(9):3405−3419.
ZHAO Pengxiang,ZHANG Wenjin,LI Shugang,et al. Mechanism of cross-fusion in gas transportation-storage area in fully mechanized mining face of high gas thick coal seam under different advancing speeds[J]. Journal of China Coal Society,2023,48(9):3405−3419.
|
[39] |
赵鹏翔,王玉龙,李树刚,等. 倾斜厚煤层仰斜综采面覆岩瓦斯缓渗区分域方法及分形特征研究[J/OL]. 煤炭科学技术,1−13[2023-11-13]. https://doi.org/10.13199/j.cnki.cst.2022-1444.
ZHAO Pengxiang,WANG Yulong,LI Shugang,et al. Study on the partition method and fractal characteristics of gas slow infiltration in overlying strata of inclined thick coal seam [J/OL]. Coal Science and Technology,1−13[2023-11-13]. https://doi.org/10.13199/j.cnki.cst.2022-1444.
|
[40] |
张永民,蒙祖智,秦 勇,等. 松软煤层可控冲击波增透瓦斯抽采创新实践-以贵州水城矿区中井煤矿为例[J]. 煤炭学报,2019,44(8):2388−2400.
ZHANG Yongmin,MENG Zuzhi,QIN Yong,et al. Innovative engineering practice of soft coal seam permeability enhancement by controllable shock wave for mine gas extraction:a case of Zhongjing Mine,Shuicheng,Guizhou Province,China[J]. Journal of China Coal Society,2019,44(8):2388−2400.
|
[41] |
徐金元. 高瓦斯工作面坚硬悬顶无焰爆破弱化技术研究与应用[D]. 徐州:中国矿业大学,2019.
XU Jinyuan. Research and application of flameless blasting weakening technology for hard suspended roof in high gas face [D]. Xuzhou:China University of Mining and Technology,2019.
|
[42] |
李树刚,王瑞哲,林海飞,等. 超声波功率对煤体损伤特性及能量演化规律的试验研究[J]. 煤炭科学技术,2023,51(1):283−294.
LI Shugang,WANG Ruizhe,LIN Haifei,et al. Experimental study on damage characteristics and energy evolution of coal by ultrasonic power[J]. Coal Science and Technology,2023,51(1):283−294.
|
[43] |
轩大洋,许家林,王秉龙. 覆岩隔离注浆充填绿色开采技术[J]. 煤炭学报,2022,47(12):4265–4277.
XUAN Dayang,XU Jialin,WANG Binglong. Green mining technology of overburden isolated grout injection[J] Journal of China Coal Society,2022,47(12):4265–4277.
|
[44] |
李全生,鞠金峰,许家林,等. 神东矿区采动裂隙岩体自修复特征研究[J]. 煤炭科学技术,2023,51(8):12−22.
LI Quansheng,JU Jinfeng,XU Jialin,et al. Self-healing law of mining fractured rock mass in Shendong coalfield[J]. Coal Science and Technology,2023,51(8):12−22.
|
[45] |
鞠金峰,李全生,许家林,等. 化学沉淀修复采动破坏岩体孔隙/裂隙的降渗特性试验[J]. 煤炭科学技术,2020,48(2):89−96.
JU Jinfeng,LI Quansheng,XU Jialin,et al. Experimental study on water permeability decrease character due to restoration function of chemical precipitation on holes or fractures in mining failure rock mass[J]. Coal Science and Technology,2020,48(2):89−96.
|
[46] |
钱春香,冯建航,苏依林. 微生物诱导碳酸钙提高水泥基材料的早期力学性能及自修复效果[J]. 材料导报,2019,33(12):1983−1988.
QIAN Chunxiang,FENG Jianhang,SU Yilin. Microbially induced calcium carbonate precipitation improves the early-age mechanical performance and self-healing effect of cement-based materials[J]. Material Report,2019,33(12):1983−1988.
|
[47] |
桑树勋. 二氧化碳地质存储与煤层气强化开发有效性研究述评[J]. 煤田地质与勘探,2018,46(5):1–9.
SANG Shuxun. Research review on technical effectiveness of CO2 geological storage and enhanced coalbed methane recovery[J]. Coal Geology & Exploration,2018,46(5):1–9.
|
[48] |
韩思杰. 深部无烟煤储层CO2-ECBM的CO2封存机制与存储潜力评价方法[D]. 徐州:中国矿业大学,2020.
HAN Sijie. CO2 containment mechanism in deep anthracite related to CO2-ECBM and assessment methodology for CO2 storage capacity [D]. Xuzhou:China University of Mining and Technology,2020.
|
[49] |
陈 润,秦 勇. 超临界CO2与煤中矿物的流固耦合及其地质意义[J]. 煤炭科学技术,2012,40(10):17−21.
CHEN Run,QIN Yong. Fluid-solid coupling between supercritical CO2 and minerals in coal and geological significances[J]. Coal Science and Technology,2012,40(10):17−21.
|
[50] |
DU Y,SANG S,PAN Z,et al. Experimental study of supercritical CO2-H2O-coal interactions and the effect on coal permeability[J]. Fuel,2019,253:369−382. doi: 10.1016/j.fuel.2019.04.161
|
[51] |
杜 艺. ScCO2注入煤层矿物地球化学及其储层结构响应的实验研究[D]. 徐州:中国矿业大学,2018.
DU Yi. Experimental study on mineral geochemical reaction and Its inducing the reservoir structure response with the injection of ScCO2 into the coal seam [D]. Xuzhou:China University of Mining and Technology,2018.
|
[52] |
任韶然,李德祥,张 亮,等. 地质封存过程中CO2泄漏途径及风险分析[J]. 石油学报,2014,35(3):591−601.
REN Shaoran,LI Dexiang,ZHANG Liang,et al. Leakage pathways and risk analysis of carbon dioxide in geological storage[J]. Acta Petrolei Sinica,2014,35(3):591−601.
|
[53] |
BUSCH A,ALLES S,GENSTERBLUM Y,et al. Carbon dioxide storage potential of shales[J]. International Journal of Greenhouse Gas Control,2008,2(3):297−308. doi: 10.1016/j.ijggc.2008.03.003
|
[54] |
BUSCH A,KROOSS B M. Carbon dioxide storage in abandoned coal mines [C]//Carbon Dioxide Sequestration in Geological Media-State of the Science: AAPG Studies in Geology, 2019.
|
[55] |
JALILI P,SAYDAM S,CINAR Y. CO2 storage in abandoned coal mines[C]//11th Underground Coal Operators’ Conference,2011,355−360.
|
[56] |
王双明,申艳军,孙 强,等. “双碳”目标下煤炭开采扰动空间CO2地下封存途径与技术难题探索[J]. 煤炭学报,2022,47(1):45−60.
WANG Shuangming,SHEN Yanjun,SUN Qiang,et al. Underground CO2 storage and technical problems in coal mining area under the “dual carbon” target[J]. Journal of China Coal Society,2022,47(1):45−60.
|
[57] |
刘 浪,王双明,朱梦博,等. 基于功能性充填的储库构筑与封存方法探索[J]. 煤炭学报,2022,47(3):1072−1086.
LIU Lang,WANG Shuangming,ZHU Mengbo,et al. CO2 storage-cavern construction and storage method based on functional backfill[J]. Journal of China Coal Society,2022,47(3):1072−1086.
|
[58] |
李树刚,张静非,林海飞,等. 采空区碳封存条件下CO2-水界面特性及溶解传质规律研究[J/OL]. 煤炭学报:1−15. [2023-11-13]. https://doi.org/10.13225/j.cnki.jccs.ST23.1206.
LI Shugang,ZHANG Jingfei,LIN Haifei,et al. Research on the characteristics of CO2-water interface and the law of dissolution and mass transfer under the condition of carbon sequestration in goaf[J/OL]. Journal of China Coal Society:1−15[2023-11-13]. https://doi.org/10.13225/j.cnki.jccs.ST23.1206.
|
[59] |
王 昊,林千果,郭军红,等. 黄土塬地区CO2驱油封存泄漏地下水监测体系研究[J]. 环境工程,2021,39(8):217−226.
WANG Hao,LIN Qianguo,GUO Junhong,et al. Development of a groundwater monitoring system for CO2 leakage of CO2-EOR storage in loess tableland region[J]. Environmental Engineering,2021,39(8):217−226.
|
[60] |
蒋金豹,何汝艳,STEVEND Michael. 基于连续小波变换的地下储存CO2泄漏高光谱遥感监测[J]. 煤炭学报,2015,40(9):2152−2158.
JIANG Jinbao,HE Ruyan,STEVEND Michael. Monitoring the micro-cavity of underground stored CO2 by using hyperspectral remote sensing based on continuous wavelet transform[J]. Journal of China Coal Society,2015,40(9):2152−2158.
|
[61] |
程 萌,马俊杰,刘 丹,等. CO2封存泄漏的稻田土壤细菌监测指标筛选研究[J]. 环境科学学报,2021,41(6):2390−2401.
CHENG Meng,MA Junjie,LIU Dan,et al. Screening of bacteria monitoring indicators in paddy soil under sealed CO2 leakage[J]. Acta Scientiae Circumstantiae,2021,41(6):2390−2401.
|