Advance Search

LIANG Weiguo,GUO Fengqi,YU YongJun,et al. Research progress on in-situ intelligent sorting and filling technology of coal gangue underground[J]. Coal Science and Technology,2024,52(4):12−27

. DOI: 10.12438/cst.2023-1677
Citation:

LIANG Weiguo,GUO Fengqi,YU YongJun,et al. Research progress on in-situ intelligent sorting and filling technology of coal gangue underground[J]. Coal Science and Technology,2024,52(4):12−27

. DOI: 10.12438/cst.2023-1677

Research progress on in-situ intelligent sorting and filling technology of coal gangue underground

Funds: 

Key Funding Project of the National Regional Innovation and Development Joint Fund (U22A20167)

More Information
  • Received Date: December 10, 2023
  • Available Online: March 29, 2024
  • Coal gangue needs to be transported to the ground for further treatment in traditional underground mines, which not only occupies land spaces, but also causes atmospheric and environmental pollutions due to spontaneous combustion and rainwater leaching. Moreover, energy consumption problems caused by long-distance ineffective transportation have become a key bottleneck restricting the low-carbon development of coal mines. In order to realize the underground disposal of coal gangue, and to reduce carbon emission and energy resource consumption per unit output from the source of coal production, as well as to realize the green low-carbon intelligent mining of coal, the present situation and intelligent progress of underground sorting and filling technology of coal gangue are comprehensively reviewed, and in this regard, the developing trend of underground sorting and filling technology of coal gangue is also anticipated. Meanwhile, an innovative method of underground in-situ green intelligent sorting and filling of coal gangue is proposed, and the structure and principle of coal gangue intelligent sorting and new filling hydraulic support are described in detail, so as to minimize the invalid transportation distance of gangue. In order to deal with the gangue of coal mining face and prevent the dynamic disaster of coal and rock, an intelligent integrated system of mining, sorting and filling in coal mine is designed, including four subsystems, i.e., an intelligent mining system with less gangue, an in-situ intelligent sorting system, a mine pressure inversion system of working face and a precise scientific filling system. Meanwhile, new logic relationships among multiple subsystems are discussed, so as to form a virtuous cycle of coal mining conducive to sorting, sorting conducive to filling and filling conducive to coal mining. In order to deal with the gangue in the heading face, an intelligent integrated system of underground excavation, aimed at sorting and filling in coal mine is proposed also with four subsystems, i.e., an intelligent fast excavation system, an intelligent sorting system, a coal gangue transportation system and an intelligent filling system, and the work and intelligent realization of each subsystem are described. The proposed new process in this study is expected to realize the underground disposal of coal gangue, and provide new ideas for the research of in-situ intelligent sorting and filling method of coal gangue and the integrated system of mining, sorting and filling.

  • [1]
    徐 慧,刘 希,刘嗣明. 推动绿色发展,促进人与自然和谐共生:习近平生态文明思想的形成发展及在二十大的创新[J]. 宁夏社会科学,2022(6):5−19.

    XU Hui,LIU Xi,LIU Siming. Promoting green development and promoting harmonious coexistence between man and nature : the formation and development of Xi Jingping 's ecological civilization thought and its innovation in the 20th National Congress[J]. Social Sciences in Ningxia,2022(6):5−19.
    [2]
    NEWELL R,RAIMI D,ALDANA G. Global energy outlook 2019:the next generation of energy[J]. Resources for the Future,2019,1:8−19.
    [3]
    邹才能,何东博,贾成业,等. 世界能源转型内涵、路径及其对碳中和的意义[J]. 石油学报,2021,42(2):233−247.

    ZOU Caineng,HE Dongbo,JIA Chengye,et al. Connotation and pathway of world energy transition and its significance for carbon neutral[J]. Acta Petrolei Sinica,2021,42(2):233−247.
    [4]
    李 辉,庞 博,朱法华,等. 碳减排背景下我国与世界主要能源消费国能源消费结构与模式对比[J]. 环境科学,2022,43(11):5294−5304.

    LI Hui,PANG Bo,ZHU Fahua,et al. Comparison of energy consumption structure and mode between China and major energy consuming countries in the world under the background of carbon emission reduction[J]. Environmental Science,2022,43(11):5294−5304.
    [5]
    张 剑,刘景洋,董 莉,等. 中国能源消费CO2排放的影响因素及情景分析[J]. 环境工程技术学报,2023,13(1):71−78.

    ZHANG Jian,LIU Jingyang,DONG Li,et al. Influencing factors and scenario analysis of CO2 emission from energy consumption in China[J]. Journal of Environmental Engineering Technology,2023,13(1):71−78.
    [6]
    张 明,胡 耘,朱法华,等. 中国与世界主要经济体能源消费特征比较研究[J]. 中国国土资源经济,2021,34(1):47−54.

    ZHANG Ming,HU Yun,ZHU Fahua,et al. A comparative study on the characteristics of energy consumption between china and the world's major economies[J]. Natural Resource Economics of China,2021,34(1):47−54.
    [7]
    胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版),2021,21(3):1−15.

    HU Angang. China’s peak carbon dioxide emissions goal before 2030 and its main ways[J]. Journal of Beijing University of Technology(Social Sciences Edition),2021,21(3):1−15.
    [8]
    谢和平,任世华,谢亚辰,等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报,2021,46(7):2197−2211.

    XIE Heping,REN Shihua,XIE Yachen,et al. Development opportunities of the coal industry towards the goal of carbon neutrality[J]. Journal of China Coal Society,2021,46(7):2197−2211.
    [9]
    张吉雄. 矸石直接充填综采岩层移动控制及其应用研究[D]. 徐州:中国矿业大学,2008.

    ZHANG Jixiong. Study on strata movement controlling by raw waste backfilling with fully-mechanized coal winning technology and its engineering applications[D]. Xuzhou:China University of Mining and Technology,2008.
    [10]
    李 猛. 矸石充填材料力学行为及控制岩层移动机理研究[D]. 徐州:中国矿业大学,2018.

    LI Meng. Mechanical behaviour of gangue backfill material and control mechanism of strata movement[D]. Xuzhou:China University of Mining and Technology,2018.
    [11]
    FAN Gangwei,ZHANG Dongsheng,WANG Xufeng. Reduction and utilization of coal mine waste rock in China:a case study in Tiefa coalfield[J]. Resources,Conservation and Recycling,2014,83:24−33.
    [12]
    张吉雄,缪协兴,郭广礼. 矸石(固体废物)直接充填采煤技术发展现状[J]. 采矿与安全工程学报,2009,26(4):395−401.

    ZHANG Jixiong,MIAO Xiexing,GUO Guangli. Development status of backfilling technology using raw waste in coal mining[J]. Journal of Mining & Safety Engineering,2009,26(4):395−401.
    [13]
    XUE Qiang,LU Haijun,ZHAO Ying,et al. The metal ions release and microstructure of coal gangue corroded by acid-based chemical solution[J]. Environmental Earth Sciences,2014,71(7):3235−3244. doi: 10.1007/s12665-013-2743-y
    [14]
    ZHANG Yingyi,NAKANO Jinichiro,LIU Lili ,et al. Trace element partitioning behavior of coal gangue-fired CFB plant:experimental and equilibrium calculation[J]. Environmental Science and Pollution Research,2015,22(20):15469−15478.
    [15]
    潘一山,宋义敏,刘 军. 我国煤矿冲击地压防治的格局、变局和新局[J]. 岩石力学与工程学报,2023,42(9):2081−2095.

    PAN Yishan,SONG Yimin,LIU Jun. The pattern,change and new situation of mine rockburst prevention and control in China[J]. Journal of Rock Mechanics and Engineering,2023,42(9):2081−2095.
    [16]
    张吉雄,巨 峰,李 猛,等. 煤矿矸石井下分选协同原位充填开采方法[J]. 煤炭学报,2020,45(1):131−140.

    ZHANG Jixiong,JU Feng,LI Meng,et al. Method of coal gangue separation and coordinated in-situ backfill mining[J]. Journal of China Coal Society,2020,45(1):131−140.
    [17]
    徐龙江. 煤矸颗粒在鼠笼式选择性分离装备中的动力学行为模拟[J]. 煤炭学报,2012,37(4):678−682.

    XU Longjiang. Dynamic behavior simulation of coal gangue particles in squirrel-cage selective separation equipment[J]. Journal of China Coal Society,2012,37(4):678−682.
    [18]
    赵浩棣. 基于机器视觉的矿井煤矸分选技术研究[D]. 徐州:中国矿业大学,2021.

    ZHAO Haodi. Research on sorting technology of coal and gangue in mine based on machine vision[D]. Xuzhou:China University of Mining and Technology,2021.
    [19]
    HOBSON D M,CARTER R M,YAN Y,et al. Differentiation between coal and stone through image analysis of texture features[C]//2007 IEEE International Workshop on Imaging Systems and Techniques. IEEE,2007:1−4.
    [20]
    MA X M,LIANG C. Application of rough set theory in coal gangue image process[C]//2009 Fifth International Conference on Information Assurance and Security. IEEE,2009,1:87−90.
    [21]
    HU F,ZHOU M,YAN P,et al. Multispectral imaging:a new solution for identification of coal and gangue[J]. IEEE Access,2019,7:169697−169704. doi: 10.1109/ACCESS.2019.2955725
    [22]
    ROBBEN C,DE Korte J,WOTRUBA H,et al. Experiences in dry coarse coal separation using X-ray-transmission-based sorting[J]. International Journal of Coal Preparation and Utilization,2014,34(3/4):210−219. doi: 10.1080/19392699.2014.869938
    [23]
    ZHANG C. Coal gangue separation system based on density measurement[C]//2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE). IEEE,2012,1:216-218.
    [24]
    缪协兴,张吉雄. 井下煤矸分离与综合机械化固体充填采煤技术[J]. 煤炭学报,2014,39(8):1424−1433.

    MIAO Xiexing,ZHANG Jixiong. Key technologies of integration of coal mining gangue washing-backfilling and coal mining[J]. Journal of China Coal Society,2014,39(8):1424−1433.
    [25]
    张吉雄,屠世浩,曹亦俊,等. 深部煤矿井下智能化分选及就地充填技术研究进展[J]. 采矿与安全工程学报,2020,37(1):1−10,22.

    ZHANG Jixiong,TU Shihao,CAO Yijun,et al. Research progress of technologies for intelligent separation and in-situ backfill in deep coal mines in China[J]. Journal of Mining & Safety Engineering,2020,37(1):1−10,22.
    [26]
    孙传尧,宋振国. 地下采选一体化系统的研究及应用概况[J]. 矿冶,2017,26(1):1−6.

    SUN Chuanyao,SONG Zhenguo. Development and application outline of integrated underground mining-processing system[J]. Mining and Metallurgy,2017,26(1):1−6.
    [27]
    张吉雄,张 强,巨 峰,等. 煤矿“采选充+X”绿色化开采技术体系与工程实践[J]. 煤炭学报,2019,44(1):64−73.

    ZHANG Jixiong,ZHANG Qiang,JU Feng,et al. Practice and technique of green mining with integration of mining,dressing,backfilling and X in coal resources[J]. Journal of China Coal Society,2019,44(1):64−73.
    [28]
    屠世浩,郝定溢,李文龙,等. “采选充+X”一体化矿井选择性开采理论与技术体系构建[J]. 采矿与安全工程学报,2020,37(1):81−92.

    TU Shihao,HAO Dingyi,LI Wenlong,et al. Construction of the theory and technology system of selective mining in “mining,dressing,backfillingand X” integrated mine[J]. Journal of Mining & Safety Engineering,2020,37(1):81−92.
    [29]
    李永明,刘长友,邹喜正,等. 急倾斜薄煤层胶结充填开采合理参数确定及应用[J]. 煤炭学报,2011,36(S1):7−12.

    LI Yongming,LIU Changyou,ZOU Xizheng,et al. Determination and application of rational parameters of cemented filling mining in steep thin seam[J]. Acta Sinica Coalmine,2011,36(S1):7−12.
    [30]
    李春生,安勇烨,于健浩. 瑞丰煤业超高水材料充填技术研究与应用[J]. 煤炭工程,2012(9):40−41.

    LI Chunsheng,AN Yongye,YU Jianhao. Research and application of ultra-high water filling technology in Ruifeng Coal Industry[J]. Coal Engineering,2012(9):40−41.
    [31]
    魏秀泉,孙恒虎,王莹莹. 似膏体充填用胶凝材料微观结构及物理力学特性研究[J]. 硅酸盐通报,2009,28(S1):37−40.

    WEI Xiuquan,SUN Henghu,WANG Yingying. Study on microstructure and physical and mechanical properties of cementitious materials for paste-like filling[J]. Silicate Bulletin,2009,28(S1):37−40.
    [32]
    陈 磊,赵 明,赵 健. 煤矿高浓度胶结充填料浆流变特性试验研究[J]. 中国煤炭,2016,42(10):34−37,46. doi: 10.3969/j.issn.1006-530X.2016.10.010

    CHEN Lei,ZHAO Ming,ZHAO Jian. Experimental study on rheological properties of high-concentration cemented filling slurry in coal mines[J]. China Coal,2016,42(10):34−37,46. doi: 10.3969/j.issn.1006-530X.2016.10.010
    [33]
    殷 伟,缪协兴,张吉雄,等. 矸石充填与垮落法混合综采技术研究与实践[J]. 采矿与安全工程学报,2016,33(5):845−852.

    YIN Wei,MIAO Xiexing,ZHANG Jixiong. Research on mixed mining technology with backfilling and caving methods[J]. Journal of Mining & Safety Engineering,2016,33(5):845−852.
    [34]
    谢文兵,史振凡,陈晓祥,等. 部分充填开采围岩活动规律分析[J]. 中国矿业大学学报,2004,33(2):38−41.

    XIE Wenbing,SHI Zhenfan,CHEN Xiaoxiang. Analysis of surrounding rock activities in partial backfill mining[J]. Journal of China University of Mining & Technology,2004,33(2):38−41.
    [35]
    许家林,轩大洋,朱卫兵,等. 部分充填采煤技术的研究与实践[J]. 煤炭学报,2015,40(6):1303−1312.

    XU Jialin,XUAN Dayang,ZHU Weibing,et al. Study and application of coal mining with partial backfilling[J]. Journal of China Coal Society,2015,40(6):1303−1312.
    [36]
    WANG C,SHEN B,CHEN J,et al. Compression characteristics of filling gangue and simulation of mining with gangue backfilling:an experimental investigation[J]. Geomechanics and Engineering,2020,20(6):485.
    [37]
    黄艳利,张吉雄,张 强,等. 综合机械化固体充填采煤原位沿空留巷技术[J]. 煤炭学报,2011,36(10):1624−1628.

    HUANG Yanli,ZHANG Jixiong,ZHANG Qiang,et al. Technology of gob-side entry retaining on its original position in fully-mechanized coalface with solid material backfilling[J]. Journal of China Coal Society,2011,36(10):1624−1628.
    [38]
    WANG S,MA L. Characteristics and control of mining induced fractures above longwall mines using backfilling[J]. Energies,2019,12(23):4604. doi: 10.3390/en12234604
    [39]
    缪协兴,张吉雄,郭广礼. 综合机械化固体充填采煤方法与技术研究[J]. 煤炭学报,2010,35(1):1−6.

    MIAO Xiexing,ZHANG Jixiong,GUO Guangli. Study on waste-filling method and technology in fully-mechanized coal mining[J]. Journal of China Coal Society,2010,35(1):1−6.
    [40]
    张吉雄,周跃进,黄艳利. 综合机械化固体充填采煤一体化技术[J]. 煤炭科学技术,2012,40(11):10−13,27.

    ZHANG Jixiong,ZHOU Yuejin,HUANG Yanli. Integrated technology of fully mechanized solid backfill mining[J]. Coal Science and Technology,2012,40(11):10−13,27.
    [41]
    ZHANG J,ZHANG Q,SPEARING A J S S,et al. Green coal mining technique integrating mining dressing gas draining backfilling mining[J]. International Journal of Mining Science and Technology,2017,27(1):17−27. doi: 10.1016/j.ijmst.2016.11.014
    [42]
    张吉雄,张 强,巨 峰,等. 深部煤炭资源采选充绿色化开采理论与技术[J]. 煤炭学报,2018,43(2):377−389.

    ZHANG Jixiong,ZHANG Qiang,JU Feng,et al. Theory and technique of greening mining integrating mining,separating and backfilling in deep coal resources[J]. Journal of China Coal Society,2018,43(2):377−389.
    [43]
    张吉雄,缪协兴,张 强,等. “采选抽充采”集成型煤与瓦斯绿色共采技术研究[J]. 煤炭学报,2016,41(7):1683−1693.

    ZHANG Jixiong,MIAO Xiexing,Zhang Qiang,et al. Integrated coal and gas simultaneous mining technology:mining-dressing-gas draining-backfilling[J]. Journal of China Coal Society,2016,41(7):1683−1693.
    [44]
    刘 峰,王 娜. 煤炭采选一体化绿色生产关键技术[J]. 有色金属(选矿部分),2013(S1):35−40.

    LIU Feng,WANG Na. Key technologies of integrated green production of coal mining and dressing[J]. Nonferrous Metals(Mineral Processing Section),2013(S1):35−40.
    [45]
    杨所武. 煤矿井下采选充采一体化工艺与技术研究[J]. 山东煤炭科技,2016(2):21−22,24.

    YANG Suowu. Mine ventilation system reliability and the research of early warning mechanism[J]. Shandong Coal Science and Technology,2016(2):21−22,24.
    [46]
    郭二鹏. 煤矿井下采选充采一体化关键技术研究[J]. 山东工业技术,2017(10):67.

    GUO Erpeng. Research on key technologies of integration of underground mining,dressing,charging and mining in coal mine[J]. Journal of Shandong Industrial Technology,2017(10):67.
    [47]
    王国法,任世华,庞义辉,等. 我国智能绿色矿业发展战略研究[J]. 煤炭经济研究,2021,41(12):4−10.

    WANG Guofa,REN Shihua,PANG Yihui,et al. Research on the development strategy of intelligent green mining industry in China[J]. Research on Coal Economy,2021,41(12):4−10.
    [48]
    郭文兵,吴东涛,白二虎,等. 我国煤矿智能绿色开采技术现状与展望[J]. 河南理工大学学报(自然科学版),2023,42(5):1−17.

    GUO Wenbing,WU Dongtao,BAI Erhu,et al. Present situation and prospect of intelligent green mining technology in coal mines in China[J]. Journal of Henan Polytechnic University (Natural Science Edition),2023,42(5):1−17.
    [49]
    MINAR M R,NAHER J. Recent advances in deep learning:an overview[J]. Arxiv Preprint Arxiv:1807.08169,2018.
    [50]
    梁兴国. TDS智能干选机在井下排矸充填技术的应用[J]. 选煤技术,2020(2):30−34.

    LIANG Xingguo. Application of TDS intelligent dry separator in underground gangue discharge and filling technology[J]. Coal Preparation Technology,2020(2):30−34.
    [51]
    缑新学,何 晨. TDS智能干选机在黄陵一号煤矿选煤厂的应用[J]. 煤炭加工与综合利用,2020(8):26−29.

    GOU Xinxue,HE Chen. Application of TDS intelligent dry separator in Huangling No.1 coal preparation plant[J]. Coal Processing and Comprehensive Utilization,2020(8):26−29.
    [52]
    黄邦松. TDS智能干选机在双柳煤矿的应用[J]. 中国煤炭,2020,46(3):47−50.

    HUANG Bangsong. Application of TDS intelligent dry separator in Shuangliu Coal Mine[J]. China Coal,2020,46(3):47−50.
    [53]
    林丽凤,靳远志,赵天波,等. TDS智能选矸系统在滨湖煤矿井下的应用[J]. 选煤技术,2020(6):49−52.

    LIN Lifeng,JIN Yuanzhi,ZHAO Tianbo,et al. Application of TDS intelligent gangue separation system in Binhu coal mine[J]. Coal Preparation Technology,2020(6):49−52.
    [54]
    吴金保,王慧超. TDS智能干选机在灵新选煤厂的应用[J]. 中国煤炭,2019,45(12):43−47.

    WU Jinbao,WANG Huichao. Application of TDS intelligent dry separator in Lingxin Coal Preparation Plant[J]. China Coal,2019,45(12):43−47.
    [55]
    LIU C,LI M,ZHANG Y,et al. An enhanced rock mineral recognition method integrating a deep learning model and clustering algorithm[J]. Minerals,2019,9(9):516. doi: 10.3390/min9090516
    [56]
    MA Huiling,LI Man. Characteristic analysis and recognition of coal-rock interface based on visual technology[J]. International Journal of Signal Processing,Image Processing and Pattern Recognition,2016,9(4):61−68. doi: 10.14257/ijsip.2016.9.4.06
    [57]
    HOU W. Identification of coal and gangue by feed-forward neural network based on data analysis[J]. International Journal of Coal Preparation and Utilization,2019,39(1):33−43. doi: 10.1080/19392699.2017.1290609
    [58]
    MAXWELL K,RAJABI M,ESTERLE J. Automated classification of metamorphosed coal from geophysical log data using supervised machine learning techniques[J]. International Journal of Coal Geology,2019,214:103284. doi: 10.1016/j.coal.2019.103284
    [59]
    曹现刚,刘思颖,王 鹏,等. 面向煤矸分拣机器人的煤矸识别定位系统研究[J]. 煤炭科学技术,2022,50(1):237−246.

    CAO Xiangang,LIU Siying,WANG Peng,et al. Research on coal gangue identification and positioning system for coal gangue sorting robot[J]. Coal Science and Technology,2022,50(1):237−246.
    [60]
    王 骋. 多光谱成像结合聚类分析在煤矸识别中的应用[D]. 淮南:安徽理工大学,2020.

    WANG Cheng. Application of multispectral imaging combined with cluster analysis in coal gangue identification [D]. Huainan:Anhui University of Science and Technology,2020.
    [61]
    TRIPATHY D P,GURU Raghavendra Reddy K. Novel methods for separation of gangue from limestone and coal using multispectral and joint color-texture features[J]. Journal of the Institution of Engineers (India):Series D,2017,98:109−117.
    [62]
    来文豪,周孟然,王锦国,等. 多光谱波段筛选的煤矸石快速定位[J]. 中国激光,2021,48(16):190−200.

    LAI Wenhao,ZHOU Mengran,WANG Jinguo,et al. Rapid localization of coal gangue by multi-spectral band screening[J]. China Laser,2021,48(16):190−200.
    [63]
    BALTRUSAITIS T,AHJA C,MORENCY L P. Multimodal machine learning:a survey and taxonomy[J]. IEEE transactions on pattern analysis and machine intelligence,2018,41(2):423−443.
    [64]
    齐冲冲,杨星雨,李桂臣,等. 新一代人工智能在矿山充填中的应用综述与展望[J]. 煤炭学报,2021,46(2):688−700.

    QI Chongchong,YANG Xingyu,LI Guichen,et al. Overview and prospect of the application of new generation artificial intelligence in mine filling[J]. Journal of China Coal Society,2021,46(2):688−700.
    [65]
    QI C,LY H B,CHEN Q,et al. Flocculation-dewatering prediction of fine mineral tailings using a hybrid machine learning approach[J]. Chemosphere,2020,244:125450. doi: 10.1016/j.chemosphere.2019.125450
    [66]
    QI C,FOURIE A,CHEN Q,et al. A strength prediction model using artificial intelligence for recycling waste tailings as cemented paste backfill[J]. Journal of Cleaner Production,2018,183:566−578. doi: 10.1016/j.jclepro.2018.02.154
    [67]
    QI C,TANG X,DONG X,et al. Towards Intelligent Mining for Backfill:A genetic programming-based method for strength forecasting of cemented paste backfill[J]. Minerals Engineering,2019,133:69−79. doi: 10.1016/j.mineng.2019.01.004
    [68]
    吴爱祥,李 红,程海勇,等. 全尾砂膏体流变学研究现状与展望(上):概念、特性与模型[J]. 工程科学学报,2020,42(7):803−813.

    WU Aixiang,LI Hong,CHENG Haiyong,et al. Research status and prospect of paste rheology of tailings (I):concept,characteristics and model[J]. Journal of Engineering Science,2020,42(7):803−813.
    [69]
    白春红. 基于SVM模型的充填体强度与采场稳定性需求智能匹配研究[J]. 中国矿业,2019,28(11):104−108. doi: 10.12075/j.issn.1004-4051.2019.11.020

    BAI Chunhong. Research on intelligent matching between backfill strength and stope stability requirements based on SVM model[J]. China Mining,2019,28(11):104−108. doi: 10.12075/j.issn.1004-4051.2019.11.020
    [70]
    DU K,LIU M,ZHOU J,et al. Investigating the slurry fluidity and strength characteristics of cemented backfill and strength prediction models by developing hybrid GA-SVR and PSO-SVR[J]. Mining,Metallurgy & Exploration,2022,39(2):433−452.
    [71]
    魏晓明,郭利杰,周小龙,等. 高阶段胶结充填体全时序应力演化规律及预测模型研究[J]. 岩土力学,2020,41(11):3613−3620.

    WEI Xiaoming,GUO Lijie,ZHOU Xiaolong,et al. Study on stress evolution law and prediction model of high-stage cemented backfill[J]. Geotechnical Mechanics,2020,41(11):3613−3620.
    [72]
    QI C,GUO L,LY H B,et al. Improving pressure drops estimation of fresh cemented paste backfill slurry using a hybrid machine learning method[J]. Minerals Engineering,2021,163:106790. doi: 10.1016/j.mineng.2021.106790
    [73]
    张 强,王云搏,张吉雄,等. 煤矿固体智能充填开采方法研究[J]. 煤炭学报,2022,47(7):2546−2556.

    ZHANG Qiang,WANG Yunbo,ZHANG Jixiong,et al. Study on solid intelligent filling mining method in coal mine[J]. Journal of China Coal Society,2022,47(7):2546−2556.
    [74]
    张 强,崔鹏飞,张吉雄,等. 固体智能充填关键装备工况位态表征及自主识别调控方法[J]. 煤炭学报,2022,47(12):4237−4249.

    ZHANG Qiang,CUI Pengfei,ZHANG Jixiong,et al. State characterization and self-identification control method of key equipment for solid intelligent filling[J]. Acta Coal,2022,47(12):4237−4249.
    [75]
    杨印朝,王云搏,张 强,等. 固体智能充填机械自主夯实过程机构干涉判别与调控研究[J]. 采矿与安全工程学报,2022,39(5):921−929.

    YANG Yinchao,WANG Yunbo,ZHANG Qiang,et al. Study on interference discrimination and regulation of solid intelligent filling machinery in the process of self-compacting[J]. Journal of Mining and Safety Engineering,2022,39(5):921−929.
    [76]
    陈鑫政,杨小聪,郭利杰,等. 矿山充填智能控制系统设计及工程应用[J]. 有色金属工程,2022,12(2):114−120.

    CHEN Xinzheng,YANG Xiaocong,GUO Lijie,et al. Design and engineering application of mine filling intelligent control system[J]. Nonferrous Metal Engineering,2022,12(2):114−120.
    [77]
    周忠斌,梁卫国,郭凤岐,等. 煤矿采空区智能充填深度神经网络算法研究 [J]. 太原理工大学学报,2024,55(2):223−230.

    ZHOU Zhongbin,LIANG Weiguo,GUO Fengqi,et al. Research on neural network algorithm of intelligent filling depth in coal mine goaf [J]. Journal of Taiyuan University of Technology,2024,55(2):223−230.
    [78]
    纪欣卓. 深部采选充一体化矿井工作面配采方案优化[D]. 徐州:中国矿业大学,2020.

    JI Xinzhuo. Optimization of matching mining scheme in deep mining,selection and filling integrated mine face [D]. Xuzhou:China University of Mining and Technology,2020.
    [79]
    杨振乾. 平煤十二矿突出煤层采充协调开采技术研究[D]. 徐州:中国矿业大学,2020.

    YANG Zhenqian. Study on coordinated mining technology of outburst coal seam in No. 12 Mine of Pingmei [D]. Xuzhou:China University of Mining and Technology,2020.
    [80]
    国家煤监局:煤矿机器人已经纳入安全改造中央预算内投资计划支持范围 [J]. 中国煤炭工业,2019(9):23.

    State Administration of Coal Supervision:Coal mine robots have been included in the support scope of the investment plan in the central budget for safety transformation [J]. China Coal Industry,2019(9):23.
    [81]
    窦林名,姜耀东,曹安业,等. 煤矿冲击矿压动静载的“应力场–震动波场”监测预警技术[J]. 岩石力学与工程学报,2017,36(4):803−811.

    DOU Linming,JIANG Yaodong,CAO Anye,et al. Monitoring and early warning technology of “stress field-vibration wave field” for dynamic and static load of rock burst in coal mine[J]. Journal of Rock Mechanics and Engineering,2017,36(4):803−811.
    [82]
    柏建彪,周华强,侯朝炯,等. 沿空留巷巷旁支护技术的发展[J]. 中国矿业大学学报,2004,33(2):59−62.

    BAI Jianbiao,ZHOU Huaqiang,HOU Chaojiong,et al. Development of support technology beside roadway in goaf-side entry retaining for next sublevel[J]. Journal of China University of Mining & Technology,2004,33(2):59−62.
    [83]
    王国法,张金虎,徐亚军,等. 深井厚煤层长工作面支护应力特性及分区协同控制技术[J]. 煤炭学报,2021,46(3):763−773.

    WANG Guofa,ZHANG Jinhu,XU Yajun,et al. Stress characteristics of long working face in deep well and thick coal seam and cooperative control technology in different zones[J]. Acta Coal,2021,46(3):763−773.
    [84]
    刘长友. 安全高效综放开采理论与技术[M]. 徐州:中国矿业大学出版社,2013.

    LIU Changyou. Theory and technology of safe and efficient fully mechanized caving mining[M]. Xuzhou:China University of Mining and Technology Press,2013.
    [85]
    康红普. 深部煤矿应力分布特征及巷道围岩控制技术[J]. 煤炭科学技术,2013,41(9):12−17.

    KANG Hongpu. Stress distribution characteristics and strata control technology for roadways in deep coal mines[J]. Coal Science and Technology,2013,41(9):12−17.
    [86]
    钱鸣高,石平五,许家林. 矿山压力与岩层控制[M]. 徐州:中国矿业大学出版社,2010.

    QIAN Minggao,SHI Pingwu,XU Jialin. Ground pressure and strata control[M]. Xuzhou:China University of Mining and Technology Press,2010.
  • Related Articles

    [1]ZHANG Xingrun, PAN Bojie, ZHANG Yongbin, HAO Fuchang, GAO Baobin, XI Zhiqi. Integrated prevention and control technology of unloading pressure from boreholes and high-efficiency extraction for compound power disasters[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(S1): 33-41. DOI: 10.12438/cst.2024-0941
    [2]YANG Ke, HE Shuxin, HE Xiang, CHU Mo, ZHOU Wei, YUAN Ning, CHEN Denghong, GONG Peng, ZHANG Yuanchun. Foundation and technology of coordinated utilization of bulk solid waste ‘Three modernizations’ in coal power base[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(4): 69-82. DOI: 10.12438/cst.2024-0129
    [3]WANG Fuzhong, LIU Kui, GONG Xiaobing, ZHAO Kai, ZHANG Yao, LI Dingfu. Study on integrated treatment technology of hydrogen sulfide extraction and purification in fully-mechanized mining face[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(3): 109-115. DOI: 10.13199/j.cnki.cst.2021-0820
    [4]ZHANG Xiaoxia, CHEN Siyu, SU Shanghai, WANG Haili. Design and application of mine intelligent integrated management and control platform[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(9): 168-178.
    [5]ZHAO Hongze, GUO Jinhua, LIU Yuanxu, DU Hairui, LIN Zechen. Discussion on coordination of open-pit mine group mining and integration of mining-dumping-reclaiming[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(2): 47-55.
    [6]ZHANG Kai, LI Quansheng, DAI Huayang, GUO Junting, YAN Yueguan. Research on integrated monitoring technology and practice of“space-sky-ground”on surface movement in mining area[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(2).
    [7]Integrated Technology of Backfill Mining and Raw Coal Separation in Underground Mine[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (8).
    [8]Rigid-Flexibility Integrated Energy Absorption Support Technology Applied in Deep Mine with Pressure Bumping[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (6).
    [9]Integrated Technology of Fully Mechanized Solid Backfill Mining[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (11).
    [10]Integrated Platform System Framework of Mine Internet of Things Based on Cloud Computation[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (9).
  • Cited by

    Periodical cited type(4)

    1. 杨科,何淑欣,何祥,初茉,周伟,袁宁,陈登红,龚鹏,张元春. 煤电化基地大宗固废“三化”协同利用基础与技术. 煤炭科学技术. 2024(04): 69-82 . 本站查看
    2. 武振,商和福,宗宪生. 济三矿煤矸井下原位智能分选系统及技术研究. 煤炭科技. 2024(04): 186-191+196 .
    3. 于斌,邰阳,徐刚,李勇,李东印,王世博,匡铁军,孟二存. 千万吨级综放工作面智能化放煤理论及关键技术. 煤炭科学技术. 2024(09): 48-67 . 本站查看
    4. 王思云,任美嘉,周进生. 任家庄煤矿绿色充填示范工程经济社会效益评价研究. 能源科技. 2024(06): 27-30+35 .

    Other cited types(0)

Catalog

    Article views (407) PDF downloads (148) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return