Advance Search
BAO Xiankai,JIANG Bin,ZHANG Wu,et al. Dynamic damage characteristics of coal and rock mass under shock wave pulsating load[J]. Coal Science and Technology,2024,52(12):204−223. DOI: 10.12438/cst.2023-1660
Citation: BAO Xiankai,JIANG Bin,ZHANG Wu,et al. Dynamic damage characteristics of coal and rock mass under shock wave pulsating load[J]. Coal Science and Technology,2024,52(12):204−223. DOI: 10.12438/cst.2023-1660

Dynamic damage characteristics of coal and rock mass under shock wave pulsating load

More Information
  • Received Date: November 09, 2023
  • Available Online: December 12, 2024
  • To investigate the hydraulic load characteristics of high-voltage electric pulse shock waves in water, as well as the dynamic damage features of coal rock mass subjected to their influence, true triaxial fracturing tests on coal-rock specimens have been carried out. Under varied conditions of water pressure and discharge voltage, the investigation delved into attributes of water shock waves, including peak pressures, impulsive loads, and loading velocities. Elucidating the correlation between the circumferential effective stress at the drill hole periphery and the dynamic tensile strength of coal-rock mass. Furthermore, the study explored the relationships linking the initiation stress and propagation angle of cracks in coal-rock mass with factors such as in-situ stress, water pressure, and electric pulse shocks. Based on CT scans and the ABAQUS numerical simulation software,damage variables for coal rock mass with different hydraulic and electrical parameters were calculate and then evaluate the dynamic damage and crack initiation and propagation morphologies and evolutionary properties of coal rock mass. The results show that the peak pressure of the impulsive water shock increases rapidly with the amplification voltage and the water pressure, and the loading rate increases with the discharge voltage and decreases with the water pressure. Compared to the change in water pressure, the change in discharge voltage has a larger effect on the peak pressure of the water shock and its loading rate. The results of numerical simulations and laboratory tests are in good agreement and confirm each other from a microscopic point of view. The damage variables of the coal rock mass, the degree of damage and cracking significantly increase, and the number of cracks, length of extension, opening, and complexity change significantly with the water pressure and discharge voltage increase. Variations in the discharge voltage have a particularly marked effect on the destruction of coal rock mass. The research results can provide guidance for high electric pulse fracturing coal rock mass in water for efficient extraction of coalbed methane in China.

  • [1]
    刘大锰,贾奇锋,蔡益栋. 中国煤层气储层地质与表征技术研究进展[J]. 煤炭科学技术,2022,50(1):196−203.

    LIU Dameng,Jia Qifeng,Cai Yidong. Research progress on coalbed methane reservoir geology and characterization technology in China[J]. Coal Science and Technology,2022,50(1):196−203.
    [2]
    YEHYA A,BASBOUS J,MAALOUF E. Analysis of the Hydrogeological Conditions Affecting Fault Response to Nearby Hydraulic Fracturing[J]. Journal of Geophysical Research:Solid Earth,2022,127(10):e2022JB024881.
    [3]
    马东东,罗宇杰,胡大伟,等. 粒径分选性与围压对砂砾岩水力压裂破裂影响机制研究[J]. 岩石力学与工程学报,2020,39(11):2264−2273.

    MA Dongdong,LUO Yujie,HU Dawei,et al. Effects of particle size sorting and confining pressure on hydraulic fracturing mechanism of glutenite rock[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(11):2264−2273.
    [4]
    XU J Z,ZHAI C,QIN L. Mechanism and application of pulse hydraulic fracturing in improving drainage of coalbed methane[J]. Journal of Natural Gas Science & Engineering,2017,40:79−90.
    [5]
    陈江湛,曹函,孙平贺,等. 三轴加载下煤岩脉冲水力压裂扩缝机制研究[J]. 岩土力学,2017,38(4):1023−1031.

    CHEN Jiangzhan,CAO Han,SUN Pinghe,et al. Mechanisms of fracture extending in coal rock by pulse hydraulic fracturing under triaxial loading[J]. Rock and Soil Mechanics,2017,38(4):1023−1031.
    [6]
    YANG J. X. ,LIU C. Y. Experimental Study and Engineering Practice of Pressured Water Coupling Blasting[J]. Shock and Vibration,2017,2017:1-12.
    [7]
    乔奕炜. 煤层气超声波增产可行性研究[D]. 成都:西南石油大学,2018.

    QIAO Yiwei. Feasibility study of ultrasonic production enhancement of coalbed methane[D]. Chengdu:Southwest Petroleum University,2018.
    [8]
    ZHANG X L,LIN B Q,LI Y J,et al. Enhancement effect of NaCl solution on pore structure of coal with high-voltage electrical pulse treatment[J]. Fuel,2019,235:744−752. doi: 10.1016/j.fuel.2018.08.049
    [9]
    赵胤翔,赵金昌,马忠忠,等. 水中高压电脉冲放电致裂不同强度煤体效果研究[J]. 中国矿业,2021,30(10):175−180. doi: 10.12075/j.issn.1004-4051.2021.10.011

    ZHAO Yinxiang,ZHAO Jinchang,MA Zhongzhong,et al. Research on effect of high-voltage electric pulse discharge in water on cracking different strength coal[J]. China Mining Magazine,2021,30(10):175−180. doi: 10.12075/j.issn.1004-4051.2021.10.011
    [10]
    卞德存. 静水压下脉冲放电冲击波特性及其岩体致裂研究[D]. 太原:太原理工大学,2018.

    BIAN Decun. Research on the shock wave characteristics of pulsed discharge under hydrostatic pressure and its fracturing effect on rock mass[D]. Taiyuan:Taiyuan University of Technology,2018.
    [11]
    鲍先凯,武晋文,杨东伟,等. 高压电脉冲水压致裂煤体效果试验研究[J]. 煤炭科学技术,2017,45(9):133−138.

    BAO Xiankai,WU Jinwen,YANG Dongwei,et al. Experimental study on coal fracturing effect by high-voltage pulsed water pressure[J]. Coal Science and Technology,2017,45(9):133−138.
    [12]
    鲍先凯. 高压电脉冲水压压裂煤体机理及实验研究[D]. 太原:太原理工大学,2018.

    BAO Xiankai. The study on mechanism and experiment of hydraulic fracturing coal in high voltage electric pulse[D]. Taiyuan:Taiyuan University of Technology,2018.
    [13]
    鲍先凯,刘源,郭军宇,等. 煤岩体在水中高压放电下致裂效果的定量评价[J]. 岩石力学与工程学报,2020,39(4):715−725.

    BAO Xiankai,LIU Yuan,GUO Junyu,et al. Quantitative evaluation of the fracturing effect of coal-rock masses under high-voltage discharge actions in water[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(4):715−725.
    [14]
    BAO X K,GUO J Y,LIU Y,et al. Damage characteristics and laws of micro-crack of underwater electric pulse fracturing coal-rock mass[J]. Theoretical and Applied Fracture Mechanics,2021,111(5):102853.
    [15]
    贾少华,赵金昌,尹志强,等. 基于高压电脉冲煤体增透的水激波波前时间变化规律研究[J]. 太原理工大学学报,2015,46(6):680−684,690.

    JIA Shaohua,ZHAO Jinchang,YIN Zhiqiang,et al. Study on the variation law of water excitation wavefront time based on high-voltage electric pulse coal body permeability enhancement[J]. Journal of Taiyuan University of Technology,2015,46(6):680−684,690.
    [16]
    GRADY D. E. ,KIPP M. E. Continuum modelling of explosive fracture in oil shale[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1980,17(3):147−157.
    [17]
    李涛,马永君,刘波,等. 循环荷载作用下冻结灰砂岩强度特征与弹性模量演化规律[J]. 煤炭学报,2018,43(9):2438−2443.

    LI Tao,MA Yongjun,LIU Bo,et al. Strength characteristics and elastic modulus evolution of frozen gray sandstone under cyclic loading[J]. Journal of China Coal Society,2018,43(9):2438−2443.
    [18]
    李子运,吴光,黄天柱,等. 三轴循环荷载作用下页岩能量演化规律及强度失效判据研究[J]. 岩石力学与工程学报,2018,37(3):662−670.

    LI Ziyun,WU Guang,HUANG Tianzhu,et al. Variation of energy and criteria for strength failure of shale under traixial cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(3):662−670.
    [19]
    闻名,许金余,王浩宇,等. 低温–动荷载耦合作用下砂岩破坏断口的形貌分析[J]. 岩石力学与工程学报,2017,36(S2):3822−3830.

    WEN Ming,XU Jinyu,WANG Haoyu,et al. Fractography analysis of sandstone failure under low temperature-dynamic loading coupling effects[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(S2):3822−3830.
    [20]
    LI X B,WANG S M,WENG L,et al. Damage constitutive model of different age concretes under impact load[J]. Journal of Central South University,2015,22(2):693−700. doi: 10.1007/s11771-015-2572-0
    [21]
    刘晓辉,戴峰,刘建锋,等. 考虑层理方向煤岩的静动巴西劈裂试验研究[J]. 岩石力学与工程学报,2015,34(10):2098−2105.

    LIU Xiaohui,DAI Feng,LIU Jianfeng,et al. Brazilian splitting tests on coal rock considering bedding direction under static and dynamic loading rate[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(10):2098−2105.
    [22]
    郭德勇,吕鹏飞,赵杰超,等. 煤岩冲击变形破坏特性及其本构模型[J]. 煤炭学报,2018,43(8):2233−2242.

    GUO Deyong,LU Pengfei,ZHAO Jiechao,et al. Deformation and damage characteristics and constitutive model of coal and rock under impact loading[J]. Journal of China Coal Society,2018,43(8):2233−2242.
    [23]
    梁为民,李晓鹏,李敏敏. 冲击荷载作用下各向异性煤体中大孔结构变化规律研究[J]. 煤炭科学技术,2022,50(11):100−109.

    LIANG Weimin,LI Xiaopeng,Li Minmin. Study on the evolution of macropore structure in anisotropic coal under impact load[J]. Coal Science and Technology,2022,50(11):100−109.
    [24]
    李全贵,邓羿泽,胡千庭,等. 煤岩水力压裂物理试验研究综述及展望[J]. 煤炭科学技术,2022,50(12):62−72.

    LI Quangui,DENG Yize,HU Qianting,et al. Review and prospect of coal rock hydraulic fracturing physical experimental research[J]. Coal Science and Technology,2022,50(12):62−72.
    [25]
    李培培. 钻孔注水高压电脉冲致裂瓦斯抽放技术基础研究[D]. 太原:太原理工大学,2010.

    LI Peipei. Drilling water injection pressure impulses crack gas drainage technology research[D]. Taiyuan:Taiyuan University of Technology,2010.
    [26]
    LECAMPION B. An extended finite element method for hydraulic fracture problems[J]. International Journal for Numerical Methods in Biomedical Engineering,2009,25(2):121−133.
    [27]
    DAHI-TALEGHANI A,OLSON J E. Numerical modeling of multistranded hydraulic fracture propagation:accounting for the interaction between induced and natural fractures[J]. SPE Journal,2011,16(3):575−581. doi: 10.2118/124884-PA
    [28]
    DAHI-TALEGHANI A,OLSON J E. How natural fractures could affect hydraulic fracture geometry[J]. SPE Journal,2014,19(1):161−171. doi: 10.2118/167608-PA
    [29]
    GHOLAMI A,RAHMAN S S,NATARAJAN S. Simulation of Hydraulic Fracture Propagation Using XFEM[C]. Sustainable Earth Sciences, 2013.
    [30]
    MOHAMMADNEJAD T. ,KHOEI A. R. An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model[J]. Finite Elements in Analysis & Design,2013,73:77-95.
    [31]
    尹志强,赵金昌,贾少华,等. 基于高压电脉冲的水激波加载特性的实验研究[J]. 煤炭技术,2016,35(6):182−185.

    YIN Zhiqiang,ZHAO Jinchang,JIA Shaohua,et al. Experimental study of water shock load characteristics based on high-voltage pulse discharge[J]. Coal Technology,2016,35(6):182−185.
    [32]
    薄云鹤. 火山岩水平井分段压裂应力场变化规律分析[D]. 大庆:东北石油大学,2019.

    BO Yunhe. Analysis of variation law of volcanic reservoir stress fields in horizontal well staged fracturing[D]. Daqing:Northeast Petroleum University,2019.
    [33]
    师素珍,郭家成,谷剑英,等. 寺河矿东五盘2011ZX_CC_01井井喷原因[J]. 煤炭学报,2018,43(11):3187−3195.

    SHI Suzhen,GUO Jiacheng,GU Jianying,et al. Exploration research on 2011ZX_CC_01 well blowout in East Five Panel of Sihe Mine[J]. Journal of China Coal Society,2018,43(11):3187−3195.
    [34]
    彭守建,许江,尹光志,等. 基质收缩效应对含瓦斯煤渗流影响的实验分析[J]. 重庆大学学报,2012,35(5):109−114. doi: 10.11835/j.issn.1000-582X.2012.05.018

    PENG Shoujian,XU Jiang,YIN Guangzhi,et al. Experimental analysis of matrix shrinkage’s influence on mechanical permeability of gas-filled coal[J]. Journal of Chongqing University,2012,35(5):109−114. doi: 10.11835/j.issn.1000-582X.2012.05.018
    [35]
    田富超. 寺河矿西井区3号煤层瓦斯突出预测指标研究[D]. 焦作:河南理工大学,2010.

    TIAN Fuchao. Research on gas outburst prediction indexs about No. 3 coal seam in west area of sihe coal mine[D]. Jiaozuo:Henan Polytechnic University,2010.
    [36]
    闫东. 岩体内静水压下高压脉冲放电爆轰致裂基础研究[D]. 太原:太原理工大学,2017.

    YAN Dong. The foundational research on the highvoltage pulse discharge detonation fracturing in rock mass under hydrostatic pressure[D]. Taiyuan:Taiyuan University of Technology,2018.
    [37]
    LIU C,SHI B,ZHOU J,et al. Quantification and characterization of microporosity by image processing,geometric measurement and statistical methods:Application on SEM images of clay materials[J]. Applied Clay Science,2011,54(1):97−106. doi: 10.1016/j.clay.2011.07.022
    [38]
    邱宇超,梁卫国,李静,等. 非均质弹塑性煤体水压致裂裂纹形态研究[J]. 煤炭学报,2022,47(10):3668−3679.

    QIU Yuchao,LIANG Weiguo,LI Jing,et al. Study on fracture morphology of hydraulic fracturing in heterogeneous elastoplastic coal[J]. Journal of China Coal Society,2022,47(10):3668−3679.
    [39]
    李宗利,张宏朝,任青文,等. 岩石裂纹水力劈裂分析与临界水压计算[J]. 岩土力学,2005,26(8):1216−1220.

    LI Zongli,ZHANG Hongchao,REN Qingwen,et al. Analysis of hydraulic fracturing and calculation of critical internal water pressure of rock fracture[J]. Rock and Soil Mechanics,2005,26(8):1216−1220.
    [40]
    徐世烺. 混凝土断裂力学[M]. 北京:科学出版社,2011.
    [41]
    BAO X K,CAO J X,ZHENG W X,et al. Study on the damage model of coal rock caused by hydraulic pressure and electrical impulse in borehole[J]. Geofluids,2021,2021(1):6627242.
  • Related Articles

    [1]ZHANG Fan, ZHANG Jiarong, CHENG Haixing. Research review on intelligent object detection technology for coal mines based on deep learning[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(S1): 284-296. DOI: 10.12438/cst.2024-0428
    [2]ZHANG Fukai, SUN Yiran, WU Xufeng, LI Aijun, LI Peiyang, WANG Dengke, YUAN Guan, ZHAO Shan, ZHANG Haiyan. Real time counting method for coal mine drill pipes based on deep learning[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(6): 493-504. DOI: 10.12438/cst.2024-0366
    [3]ZHOU Yunzhuo, XU Zijing, BI Lin. The recognition of dust emission from open-pit mining roads based on cascaded convolutional networks by deep learning[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(S2): 312-320. DOI: 10.12438/cst.2023-1476
    [4]ZOU Liang, CHEN Zhifeng, TAN Zhiyi, YUAN Yilin, LEI Meng, HE Kun. Scratch detection and restoration of coal photomicrograph via deep neural network[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(S2): 275-284. DOI: 10.13199/j.cnki.cst.2023-0058
    [5]WANG Anmin, GAO Yuchao, ZOU Junchao, ZHAO Zeyuan, CAO Daiyong. Quantitative characterization of pore structure in coal measure shales based on deep learning[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(S2): 183-190. DOI: 10.13199/j.cnki.cst.2022-1597
    [6]YAN Zhirui, WANG Hongwei, GENG Yide. Coal-rock interface image recognition method based on improved DeeplabV3+ and transfer learning[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(S1): 429-439. DOI: 10.13199/j.cnki.cst.2022-1392
    [7]GAO Yasong, ZHANG Buqin, LANG Liying. Coal and gangue recognition technology and implementation based on deep learning[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(12): 202-208.
    [8]Shunling, JING Ying, LU Caiwu, GU Qinghua, ZHANG Xuefei. Study on recognition technology of truck loading condition in open-pitmine based on deep convolutional features[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(10): 167-176.
    [9]ZHANG Zelin, ZHANG Zhiwei, HU Qi, WANG Li. Study on multi-product coal image classification method based on deep learning[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(9): 117-123.
    [10]CAO Xiangang, FEI Jiahao, WANG Peng, LI Ning, SU Lingling. Study on coal-gangue sorting method based on multi-manipulator collaboration[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (4).
  • Cited by

    Periodical cited type(2)

    1. 段彩达,杨新平. 基于accuracy技术的计算机网络安全防御系统分析. 电脑知识与技术. 2025(02): 74-77 .
    2. 薛天山,李永强,郝跃,贺东东,武国鹏,白怡明. 基于改进Deep Labv3+算法在矿山岩体阴影数字化研究. 非金属矿. 2025(02): 87-91 .

    Other cited types(0)

Catalog

    Article views (63) PDF downloads (34) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return