Advance Search
YU Jianxin,MENG Pengzhan,ZHANG Xin,et al. Rock breaking regularity of layered rock mass blasting under the influence of different resistance lines[J]. Coal Science and Technology,2024,52(12):60−70. DOI: 10.12438/cst.2023-1612
Citation: YU Jianxin,MENG Pengzhan,ZHANG Xin,et al. Rock breaking regularity of layered rock mass blasting under the influence of different resistance lines[J]. Coal Science and Technology,2024,52(12):60−70. DOI: 10.12438/cst.2023-1612

Rock breaking regularity of layered rock mass blasting under the influence of different resistance lines

More Information
  • Received Date: November 04, 2023
  • Available Online: December 08, 2024
  • Layered rock is a common geological structure of underground engineering construction, drilling and blasting method construction in layered rock is manifested in poor blasting and shaping effect, serious phenomenon of over and under excavation, uneven vibration propagation and other problems. Resistance line is a key parameter affecting the effect of blasting, this study takes the minimum resistance line as a control index to study the blasting and rock breaking law of layered rock body under the influence of initial stress and joint angle. Taking the Class III surrounding rock as the geological background, the concrete specimens with different nodal parameters were prepared as the simulation material of layered rock body by layered casting method, and a series of blasting experiments under different blasting conditions were carried out, and the test process was monitored by the combination of high-speed camera, dynamic signal analysis system, and intelligent five-segment bursting tachymeter and other equipment; and the damage of layered rock body under the coupling of static geostatic load and dynamic blast load and the law of stress wave propagation were analysed by using the three-dimensional numerical simulation model of LS-DYNA. The results of the study show that: joints on the propagation of blasting stress waves have a barrier effect, changing the direction and shape of crack expansion, stress waves transmitted to the joint surface after a large amount of energy reflection phenomenon, a small amount of energy transmittance phenomenon through the joint surface, The blasting effect shows that the main cracks first penetrate along the weak faces of the joints. Blasting effect shows that the main cracks first along the weak face of the joints through, perpendicular to the direction of the joints on the side of the rock crack development is better than the back side of the cracks, on the side of the explosion of the strain strength of the rock is greater than that of the back side of the explosion; As the resistance line increases from 6 cm to 10 cm, the extent of the blast crushed zone and fissure zone produced by the blasting of the laminated rock body gradually decreases; As the resistance line increases from 6 cm to 10 cm, the range of blasting crushed area and fissure area produced by blasting of layered rock body decreases gradually, but the range of blasting cavity first increases and then decreases. When the resistance line is small, the majority of the explosion energy is dissipated in the form of gas, resulting in energy wastage. However, when the resistance line is larger, the explosive energy acts upon the interior of the rock, making it difficult to project the rock. Blasting produces the best rock breakage when the line of resistance is H = 8 cm; The effective stress on the face of the joints on the side of the explosion with the increase of the minimum line of resistance shows a trend of increasing and then decreasing, and the combined velocity shows a trend of decreasing and then increasing. The peak values of the effective stress and combined velocity on the blasting side of the joint surface change smoothly. The research results contribute to a deeper understanding of the mechanism of layered rock blasting in underground engineering.

  • [1]
    左双英,史文兵,梁风,等. 层状各向异性岩体破坏模式判据数值实现及工程应用[J]. 岩土工程学报,2015,37(S1):191−196.

    ZUO Shuangying,SHI Wenbing,LIANG Feng,et al. Numerical simulation and engineering application for failure modes and criterion of layered anisotropic rock mass[J]. Chinese Journal of Geotechnical Engineering,2015,37(S1):191−196.
    [2]
    殷鹏飞,杨圣奇,高峰,等. 不同节理模型在层状复合岩石离散元模拟中的应用[J]. 采矿与安全工程学报,2023,40(1):164−173,183.

    YIN Pengfei,YANG Shengqi,GAO Feng,et al. Application of different joint models in stratified composite rock DEM simulation[J]. Journal of Mining & Safety Engineering,2023,40(1):164−173,183.
    [3]
    周喻,邹世卓,高永涛,等. 动载下层状岩体力学特性试验与数值模拟[J]. 哈尔滨工业大学学报,2023,55(6):93−109. doi: 10.11918/202207020

    ZHOU Yu,ZOU Shizhuo,GAO Yongtao,et al. Test and numerical simulation for mechanical properties of laminated rock mass under dynamic loading[J]. Journal of Harbin Institute of Technology,2023,55(6):93−109. doi: 10.11918/202207020
    [4]
    王旭一,黄书岭,丁秀丽,等. 层状岩体单轴压缩力学特性的非均质层面影响效应研究[J]. 岩土力学,2021,42(2):581−592.

    WANG Xuyi,HUANG Shuling,DING Xiuli,et al. Study on the effect of inhomogeneous bedding plane on the mechanical properties of uniaxial compression of layered rock mass[J]. Rock and Soil Mechanics,2021,42(2):581−592.
    [5]
    VARMA M,MAJI V B,BOOMINATHAN A. Influence of rock joints on longitudinal wave velocity using experimental and numerical techniques[J]. International Journal of Rock Mechanics and Mining Sciences,2021,141:104699. doi: 10.1016/j.ijrmms.2021.104699
    [6]
    YANG P,LEI Q H,XIANG J S,et al. Numerical simulation of blasting in confined fractured rocks using an immersed-body fluid-solid interaction model[J]. Tunnelling and Underground Space Technology,2020,98:103352. doi: 10.1016/j.tust.2020.103352
    [7]
    郭建,李兵,刘桂勇,等. 钻爆法施工隧道超欠挖控制研究[J]. 工程爆破,2021,27(1):79−84.

    GUO Jian,LI Bing,LIU Guiyong,et al. Study on control of backbreak and underbreak in tunnel excavation by drilling-and-blasting[J]. Engineering Blasting,2021,27(1):79−84.
    [8]
    张宪堂,陈士海. 考虑碰撞作用的节理裂隙岩体爆破块度预测研究[J]. 岩石力学与工程学报,2002,21(8):1141−1146. doi: 10.3321/j.issn:1000-6915.2002.08.008

    ZHANG Xiantang,CHEN Shihai. Study on blast fragmentation for jointed and fractured rockmass considering collision[J]. Chinese Journal of Rock Mechanics and Engineering,2002,21(8):1141−1146. doi: 10.3321/j.issn:1000-6915.2002.08.008
    [9]
    TALIERCIO A,SACCHI LANDRIANI G. A failure condition for layered rock[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1988,25(5):299−305.
    [10]
    XIE B J,CHEN D X,DING H,et al. Numerical simulation of split-Hopkinson pressure bar tests for the combined coal-rock by using the holmquist–Johnson–cook model and case analysis of outburst[J]. Advances in Civil Engineering,2020,2020:1−14.
    [11]
    刘运思,何楚韶,王世鸣,等. 冲击荷载下层状板岩拉伸破坏及能耗规律研究[J]. 应用力学学报,2021,38(4):1373−1382. doi: 10.11776/cjam.38.04.B108

    LIU Yunsi,HE Chushao,WANG Shiming,et al. Study on tensile failure and energy consumption law of layered slate under impact loading[J]. Chinese Journal of Applied Mechanics,2021,38(4):1373−1382. doi: 10.11776/cjam.38.04.B108
    [12]
    杨仁树,许鹏,景晨钟,等. 冲击荷载下层状砂岩变形破坏及其动态抗拉强度试验研究[J]. 煤炭学报,2019,44(7):2039−2048.

    YANG Renshu,XU Peng,JING Chenzhong,et al. Experimental study on the failure and dynamic tensile strength of layered sandstone under impact loads[J]. Journal of China Coal Society,2019,44(7):2039−2048.
    [13]
    李地元,邱加冬,李夕兵. 冲击载荷作用下层状砂岩动态拉压力学特性研究[J]. 岩石力学与工程学报,2015,34(10):2091−2097.

    LI Diyuan,QIU Jiadong,LI Xibing. Experimental study on dynamic tensile and compressive properties of bedding sandstone under impact loading[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(10):2091−2097.
    [14]
    彭守建,岳雨晴,刘义鑫,等. 不同成因结构面各向异性特征及其剪切力学特性[J]. 岩土力学,2019,40(9):3291−3299.

    PENG Shoujian,YUE Yuqing,LIU Yixin,et al. Anisotropic characteristics and shear mechanical properties of different genetic structural planes[J]. Rock and Soil Mechanics,2019,40(9):3291−3299.
    [15]
    刘际飞,璩世杰. 节理走向角度对爆炸应力波传播影响的试验研究[J]. 爆破,2014,31(2):57−61,66. doi: 10.3963/j.issn.1001-487X.2014.02.012

    LIU Jifei,QU Shijie. Experimental study of influence of joint angle of strike on explosive stress wave propagation[J]. Blasting,2014,31(2):57−61,66. doi: 10.3963/j.issn.1001-487X.2014.02.012
    [16]
    SEINOV N P,CHEVKIN A I. Effect of fissure on the fragmentation of a medium by blasting[J]. Soviet Mining Science,1968,4(3):254−259. doi: 10.1007/BF02501547
    [17]
    YANG R S,WANG Y B,DING C X. Laboratory study of wave propagation due to explosion in a jointed medium[J]. International Journal of Rock Mechanics and Mining Sciences,2016,81:70−78. doi: 10.1016/j.ijrmms.2015.10.014
    [18]
    HUANG X L,QI S W,GUO S F,et al. Experimental study of ultrasonic waves propagating through a rock mass with a single joint and multiple parallel joints[J]. Rock Mechanics and Rock Engineering,2014,47(2):549−559. doi: 10.1007/s00603-013-0399-2
    [19]
    陈雪峰,赵孝学,汪海波,等. 节理充填岩体爆炸应力波传播规律模型试验与应用研究[J]. 中国安全生产科学技术,2018,14(12):130−134.

    CHEN Xuefeng,ZHAO Xiaoxue,WANG Haibo,et al. Model tests and application research on propagation laws of blasting stress wave in jointed and filled rock mass[J]. Journal of Safety Science and Technology,2018,14(12):130−134.
    [20]
    中华人民共和国住房和城乡建设部. 砌筑砂浆配合比设计规程:JGJ/T 98—2010[S]. 北京:中国建筑工业出版社,2011.
    [21]
    张宪堂,马力,余辉,等. 空孔直径对有围压直眼掏槽爆破破碎效果的影响[J]. 煤炭科学技术,2023,51(10):55−64.

    ZHANG Xiantang,MA Li,YU Hui,et al. Influence of diameter of empty hole on the fragmentation effect of parallel cut blasting under confining pressure[J]. Coal Science and Technology,2023,51(10):55−64.
  • Cited by

    Periodical cited type(27)

    1. 杨健锋,刘泽宇,柴敬,高登彦,张丁丁,郝鸿儒,王佳琪,杨磊. 区段煤柱内部变形光纤监测应用研究. 采矿与岩层控制工程学报. 2025(02): 224-237 .
    2. 冯智杰,王龙. 孙家沟煤矿煤层开采覆岩变形与迁移规律研究. 煤矿现代化. 2025(04): 157-160 .
    3. 冀汶莉,淡新,马晨阳,柴敬,吴玉意,秋风岐,刘文涛,雷武林,刘永亮. 时间卷积长短时记忆网络煤矿平硐变形多步预测. 煤炭科学技术. 2025(04): 176-190 . 本站查看
    4. 胡龙宇,孟祥瑞,程详,赵光明,顾清恒,王艳芬. 穿层巷道围岩松动圈范围测试及演化规律研究. 中国矿业. 2025(05): 176-186 .
    5. 朱万成,徐晓冬,李磊,牟文强,宋清蔚,李荟. 金属矿山地质灾害风险智能监测预警技术现状与展望. 金属矿山. 2024(01): 20-44 .
    6. 刘天翔,朱鸿鹄,吴冰,李豪杰,胡乐乐. 埋入式应变感测光缆-冻土界面渐进破坏机制研究. 岩土力学. 2024(01): 131-140 .
    7. 柴敬,王佳琪,杨健锋,高登彦,高奎英,陈建华,刘泽宇,杨磊. 区段煤柱变形光纤光栅监测应用研究. 煤炭科学技术. 2024(01): 126-137 . 本站查看
    8. 李建. 基于激光扫描的矿井掘进围岩变形监测. 现代矿业. 2024(08): 191-194 .
    9. 王义兵. 光纤传感技术在矿山安全监测中的应用探究. 世界有色金属. 2024(20): 38-40 .
    10. 陈大星,贾浩,尚帅. 倾斜采场覆岩突水危险性分布式光纤监测研究. 煤炭技术. 2024(12): 176-180 .
    11. 杜怀龙,刘忠平,田志诚. 近距离煤层上覆遗留煤柱应力扰动特征研究及应用. 矿业安全与环保. 2024(06): 112-121 .
    12. 张礼才. 基于光纤传感的掘采装备随机振动研究. 煤矿机械. 2023(03): 33-36 .
    13. 柴敬,韩志成,雷武林,张丁丁,马晨阳,孙凯,翁明月,张有志,丁国利,郑忠友,张寅,韩刚. 回采巷道底鼓演化过程的分布式光纤实测研究. 煤炭科学技术. 2023(01): 146-156 . 本站查看
    14. 柴敬,刘泓瑞,张丁丁,刘永亮,韩志成,田志诚,张锐新. 覆岩载荷扰动下平硐围岩变形分析及支护优化. 工矿自动化. 2023(03): 13-22 .
    15. 李延河,杨战标,朱元广,王升. 基于弱光纤光栅传感技术的围岩变形监测研究. 煤炭科学技术. 2023(06): 11-19 . 本站查看
    16. 朱卫兵,王晓振,谢建林,赵波智,宁杉,许家林. 矿山采动覆岩内部岩移原位监测技术进展及应用. 工矿自动化. 2023(09): 1-12 .
    17. 孙镇艳. 分布式光栅传感技术在边坡监测中的应用研究. 工程技术研究. 2023(20): 45-47 .
    18. 程刚,王振雪,施斌,朱鸿鹄,李刚强,田立勤. 采动覆岩变形多场光纤神经感知与安全保障体系构建研究. 煤炭科学技术. 2023(11): 104-118 . 本站查看
    19. 彭泓,刘亚飞. 基于光纤光栅技术的巷道支护锚杆受力监测. 煤炭科学技术. 2022(06): 61-67 . 本站查看
    20. 周禹良,杨雪,许发强. 综放工作面导水裂隙带高度分布式光纤监测技术. 中国矿业. 2022(12): 108-114 .
    21. 王伟,弓仲标. 近距离煤层群煤柱下开采动压巷道围岩变形规律及控制. 煤炭科学技术. 2022(S2): 143-152 . 本站查看
    22. 叶少敏. 基于多参量光纤传感技术的京雄城际隧道形位感测系统应用研究. 隧道建设(中英文). 2021(07): 1141-1149 .
    23. 冀汶莉,刘艺欣,柴敬,王斌. 基于随机森林的矿压预测方法. 采矿与岩层控制工程学报. 2021(03): 71-81 .
    24. 孙斌杨,张平松. 基于DFOS的采场围岩变形破坏监测研究进展与展望. 工程地质学报. 2021(04): 985-1001 .
    25. 谢旭光. 金属矿山井下测量常见错误及预防方法研究. 中国金属通报. 2021(06): 206-207 .
    26. 冯学文,荣剑,代文程. 恒昇煤矿采场覆岩应力分布与导水裂隙带高度研究. 煤炭技术. 2021(10): 8-13 .
    27. 王飞. 基于光纤传感技术的智能矿山无人化巡检系统研究. 煤炭科学技术. 2021(S2): 263-267 . 本站查看

    Other cited types(6)

Catalog

    Article views (58) PDF downloads (20) Cited by(33)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return