Citation: | JIANG Binbin,LI Jingfeng,MA Liqiang,et al. Investigation of the suspended solids removal from mine water by the rock accumulation effect in the underground reservoir of coal mines[J]. Coal Science and Technology,2024,52(12):352−361. DOI: 10.12438/cst.2023-1602 |
The opening of an underground coal mine reservoir provides an effective technical approach to ensure the rational utilization of water resources during mining operations. This study focuses on the rock and mine water of the Daliuta Coal Mine reservoir in the Shendong Mining Area, employing simulation tests for mine water suspended solids removal and a coupling simulation of Fluent-EDEM. The impact of rock accumulation on the removal of suspended solids in water is quantified, revealing that the accumulation environment alters the mine flow state, creates a distinct reflux zone and low-speed zone, extends the sedimentation distance for suspended matter, and reduces water flow disturbance, resulting in a quasi-free sedimentation environment. Within a specific range, the suspended matter concentration gradually decreases with increasing settling time and distance. At the m outlet, the suspended matter concentration is 20 mg/L, a 95.7% reduction from the initial concentration. The steady-state settling time for suspended matter is 5 hours, with a turbidity of 60 NTU, significantly smaller than the 9 hours and 350 NTU observed in the blank simulation test. Post-sedimentation, the average diameter of suspended particles decreases from 14.99 µm to 2.02 µm, while the specific surface area increases from 12.30 m2/g to 15.75 m2/g. The removal of suspended matter from the underground reservoir is primarily through filtration, sedimentation, and adsorption, which results in a shorter sedimentation time and more efficient removal of suspended matter. This research provides a theoretical foundation for predicting effluent quality characteristics and preventing and controlling siltation in coal mine underground reservoirs.
[1] |
中华人民共和国自然资源部. 中国矿产资源报告[M]. 北京:地质出版社,2020:3.
|
[2] |
彭苏萍,张博,王佟,等. 煤炭资源与水资源[M]. 北京:科学出版社,2014.
|
[3] |
顾大钊. 我国矿井水保护利用战略与工程科技[M]. 北京:科学出版社,2022.
|
[4] |
顾大钊. 煤矿地下水库理论框架和技术体系[J]. 煤炭学报,2015,40(2):239−246.
GU Dazhao. Theory framework and technological system of coal mine underground reservoir[J]. Journal of China Coal Society,2015,40(2):239−246.
|
[5] |
陈苏社,黄庆享,薛刚,等. 大柳塔煤矿地下水库建设与水资源利用技术[J]. 煤炭科学技术,2016,44(8):21−28.
CHEN Sushe,HUANG Qingxiang,XUE Gang,et al. Technology of underground reservoir construction and water resource utilization in Daliuta Coal Mine[J]. Coal Science and Technology,2016,44(8):21−28.
|
[6] |
WANG F,WANG Y,JING C. Application overview of membrane separation technology in coal mine water resources treatment in Western China[J]. Mine Water and the Environment,2021,40(2):510−519. doi: 10.1007/s10230-021-00781-3
|
[7] |
ZHANG S Y,WANG H,HE X W,et al. Research progress,problems and prospects of mine water treatment technology and resource utilization in China[J]. Critical Reviews in Environmental Science and Technology,2020,50(4):331−383. doi: 10.1080/10643389.2019.1629798
|
[8] |
蒋斌斌,刘舒予,任洁,等. 煤矿地下水库对含不同赋存形态有机物及重金属矿井水净化效果研究[J]. 煤炭工程,2020,52(1):122−127.
JIANG Binbin,LIU Shuyu,REN Jie,et al. Purification effect of coal mine groundwater reservoir on mine water containing organic compounds and heavy metals in different occurrence forms[J]. Coal Engineering,2020,52(1):122−127.
|
[9] |
李喜林,王来贵,韩亮. 废弃煤矿矿井水在煤岩体入渗过程中的水岩作用机理研究[J]. 水资源与水工程学报,2008,19(5):11−14.
LI Xilin,WANG Laigui,HAN Liang. Study on of the mechanism water-rock interaction of mine water from abandoned mines during infiltration through coal rock[J]. Journal of Water Resources and Water Engineering,2008,19(5):11−14.
|
[10] |
韩佳明,高举,杜坤,等. 煤矿地下水库水体水化学特征及其成因解析[J]. 煤炭科学技术,2020,48(11):223−231.
HAN Jiaming,GAO Ju,DU Kun,et al. Analysis of hydrochemical characteristics and formation mechanism in coal mine underground reservoir[J]. Coal Science and Technology,2020,48(11):223−231.
|
[11] |
ZHANG C,WANG F T,BAI Q S. Underground space utilization of coalmines in China:a review of underground water reservoir construction[J]. Tunnelling and Underground Space Technology,2021,107:103657. doi: 10.1016/j.tust.2020.103657
|
[12] |
ZOU J Y,YANG Y S,ZHANG H Y. Sr isotope fingerprinting of multiple water-source characterizations and its environmental implications in a complex lake-groundwater system,Wudalianchi,Northeast China[J]. Chemosphere,2018,212:1095−1103. doi: 10.1016/j.chemosphere.2018.09.027
|
[13] |
张凯,高举,蒋斌斌,等. 煤矿地下水库水–岩相互作用机理实验研究[J]. 煤炭学报,2019,44(12):3760−3772.
ZHANG Kai,GAO Ju,JIANG Binbin,et al. Experimental study on the mechanism of water-rock interaction in the coal mine underground reservoir[J]. Journal of China Coal Society,2019,44(12):3760−3772.
|
[14] |
SHAN A Q,CHEN S Z,FENG L L. Study on mechanisms of treating mine wastewater by goaf and the methods of recycling mine wastewater in Jining No. 2 coal mine[J]. Procedia Earth and Planetary Science,2009,1(1):1242−1246. doi: 10.1016/j.proeps.2009.09.191
|
[15] |
OSIPOV V I,ZVEREV V P,KOSTIKOVA I A,et al. Hydrogeochemical features of water-rock interaction in verkhnekamskiy saliferous basin[J]. Water Resources,2015,42(7):864−868. doi: 10.1134/S0097807815070106
|
[16] |
于妍,陈薇,曹志国,等. 煤矿地下水库矿井水中溶解性有机质变化特征的研究[J]. 中国煤炭,2018,44(10):168−173. doi: 10.3969/j.issn.1006-530X.2018.10.031
YU Yan,CHEN Wei,CAO Zhiguo,et al. Research on change features on dissolved organic matter of mine water in coal mine’s underground reservoir[J]. China Coal,2018,44(10):168−173. doi: 10.3969/j.issn.1006-530X.2018.10.031
|
[17] |
顾大钊,李庭,李井峰,等. 我国煤矿矿井水处理技术现状与展望[J]. 煤炭科学技术,2021,49(1):11−18.
GU Dazhao,LI Ting,LI Jingfeng,et al. Current status and prospects of coal mine water treatment technology in China[J]. Coal Science and Technology,2021,49(1):11−18.
|
[18] |
顾大钊,张建民. 西部矿区现代煤炭开采对地下水赋存环境的影响[J]. 煤炭科学技术,2012,40(12):114−117.
GU Dazhao,ZHANG Jianmin. Modern coal mining affected to underground water deposit environment in West China mining area[J]. Coal Science and Technology,2012,40(12):114−117.
|
[19] |
曹志国,何瑞敏,王兴峰. 地下水受煤炭开采的影响及其储存利用技术[J]. 煤炭科学技术,2014,42(12):113−116,128.
CAO Zhiguo,HE Ruimin,WANG Xingfeng. Coal mining affected to underground water and underground water storage and utilization technology[J]. Coal Science and Technology,2014,42(12):113−116,128.
|
[20] |
曹志国,李全生,董斌琦. 神东矿区煤炭开采水资源保护利用技术与应用[J]. 煤炭工程,2014,46(10):162−164,168. doi: 10.11799/ce201410046
CAO Zhiguo,LI Quansheng,DONG Binqi. Water resource protection and utilization technology and application of coal mining in Shendong mining area[J]. Coal Engineering,2014,46(10):162−164,168. doi: 10.11799/ce201410046
|
[21] |
JIANG B B,GAO J,DU K,et al. Insight into the water–rock interaction process and purification mechanism of mine water in underground reservoir of Daliuta coal mine in China[J]. Environmental Science and Pollution Research,2022,29(19):28538−28551. doi: 10.1007/s11356-021-18161-3
|
[22] |
SALCEDO SÁNCHEZ E R,GARRIDO HOYOS S E,ESTELLER M V,et al. Hydrogeochemistry and water-rock interactions in the urban area of Puebla Valley aquifer (Mexico)[J]. Journal of Geochemical Exploration,2017,181:219−235. doi: 10.1016/j.gexplo.2017.07.016
|
[23] |
方志远. 万利一矿采空区垮裂煤岩对地下水库储水净化机理研究[D]. 徐州:中国矿业大学,2020.
FANG Zhiyuan. Research on Mechanism of Purifying Underground Reservoir Water Storage by Collapsed Coal Rock in Goaf of Wanli No. 1 Coal Mine[D]. Xuzhou:China University of Mining and Technology,2020.
|
[24] |
王莉娜. 神东矿区矿井水悬浮物处理技术[J]. 能源环境保护,2014,28(5):36−38.
WANG Lina. Suspended solids removal in mine drainage in Shendong mining area[J]. Energy Environmental Protection,2014,28(5):36−38.
|
[25] |
顾大钊. 相似材料与相似模型[M]. 徐州:中国矿业大学出版社,1995.
|
[26] |
鞠金峰,许家林,朱卫兵. 西部缺水矿区地下水库保水的库容研究[J]. 煤炭学报,2017,42(2):381−387.
JU Jinfeng,XU Jialin,ZHU Weibing. Storage capacity of underground reservoir in the Chinese western water-short coalfield[J]. Journal of China Coal Society,2017,42(2):381−387.
|
[27] |
李全生,鞠金峰,曹志国,等. 基于导水裂隙带高度的地下水库适应性评价[J]. 煤炭学报,2017,42(8):2116−2124.
LI Quansheng,JU Jinfeng,CAO Zhiguo,et al. Suitability evaluation of underground reservoir technology based on the discriminant of the height of water conduction fracture zone[J]. Journal of China Coal Society,2017,42(8):2116−2124.
|
[28] |
胡成琼,汪思宇,吕锡武. 折流板水车驱动生物转盘水力流态及启动挂膜试验[J]. 净水技术,2021,40(10):43−48,93.
HU Chengqiong,WANG Siyu,LYU Xiwu. Experiment of hydraulic flow pattern and biofilm formation start-up for the waterwheel driving baffled rotating biological contactor[J]. Water Purification Technology,2021,40(10):43−48,93.
|
[29] |
庞纪元,吴俊奇,宋永会,等. 同步进出水SBR设备最佳进水方式流态模拟[J]. 环境工程学报,2015,9(8):3650−3658. doi: 10.12030/j.cjee.20150811
PANG Jiyuan,WU Junqi,SONG Yonghui,et al. Simulation of the best inlet flow pattern for synchronization in-out SBR[J]. Chinese Journal of Environmental Engineering,2015,9(8):3650−3658. doi: 10.12030/j.cjee.20150811
|
[30] |
叶文旭,杨小兰,孙凯,等. 基于EDEM FLUENT的液力湍流磨内部流场的数值模拟[J]. 南京工程学院学报(自然科学版),2022,20(1):84−90.
YE Wenxu,YANG Xiaolan,SUN Kai,et al. Numerical simulation of internal flow field in hydrodynamic turbulent Mills based on EDEM-fluent[J]. Journal of Nanjing Institute of Technology (Natural Science Edition),2022,20(1):84−90.
|
[31] |
宋培圆,张亮,杨慎华,等. 生物膜强化推流式颗粒污泥自养脱氮反应器启动[J]. 中国环境科学,2021,41(6):2595−2601. doi: 10.3969/j.issn.1000-6923.2021.06.012
SONG Peiyuan,ZHANG Liang,YANG Shenhua,et al. Start-up of biofilm enhanced granular sludge process for autotrophic nitrogen removal in a plug-flow reactor[J]. China Environmental Science,2021,41(6):2595−2601. doi: 10.3969/j.issn.1000-6923.2021.06.012
|
[32] |
邵冲,刘军祥,于庆波. 颗粒绕流圆管传热过程的数值模拟[J]. 材料与冶金学报,2022,21(3):195−199,205.
SHAO Chong,LIU Junxiang,YU Qingbo. Numerical simulation on the heat transfer process of particles flowing around tubes[J]. Journal of Materials and Metallurgy,2022,21(3):195−199,205.
|
[33] |
张俊婷,崔小朝,王宥宏. 流体遇障碍物后流动的初步发展数值模拟[J]. 太原科技大学学报,2013,34(1):64−68. doi: 10.3969/j.issn.1673-2057.2013.01.014
ZHANG Junting,CUI Xiaochao,WANG Youhong. Numerical simulation of the flow preliminary development of fluid over an obstacle[J]. Journal of Taiyuan University of Science and Technology,2013,34(1):64−68. doi: 10.3969/j.issn.1673-2057.2013.01.014
|
[34] |
魏英杰,何钟怡. 槽道中方形障碍物绕流的大涡模拟[J]. 水动力学研究与进展(A辑),2003,18(4):433−438.
WEI Yingjie,HE Zhongyi. Large eddy simulation of flow over a square obstacle in a channel[J]. Journal of Hydrodynamics,2003,18(4):433−438.
|
1. |
卞正富,朱超斌,周跃进,曾岩,李兆泰,徐雨农. 关闭煤矿地下空间抽水储能利用产业化瓶颈与对策. 煤炭科学技术. 2025(04): 1-14 .
![]() |