Advance Search
JIANG Juyu,ZHANG Yulong,CAO Lanzhu,et al. Parameter design method of supporting coal pillar for end-slope mining under non-uniform load condition[J]. Coal Science and Technology,2024,52(12):23−37. DOI: 10.12438/cst.2023-1569
Citation: JIANG Juyu,ZHANG Yulong,CAO Lanzhu,et al. Parameter design method of supporting coal pillar for end-slope mining under non-uniform load condition[J]. Coal Science and Technology,2024,52(12):23−37. DOI: 10.12438/cst.2023-1569

Parameter design method of supporting coal pillar for end-slope mining under non-uniform load condition

More Information
  • Received Date: October 29, 2023
  • Available Online: December 13, 2024
  • In the process of applying the mining technology of the end-wall shearer to recover the coal resources retained in the end-wall, the reasonable design of the parameters of the supporting coal pillar is the premise of the safe and efficient end-wall mining. Based on the cusp catastrophe theory, the necessary and sufficient conditions for the instability of the supporting coal pillar in the end slope mining are established. The mechanical analysis model of mining roof-coal pillar was established. Based on the elastic foundation beam theory, the spatial evolution law of roof stress and deformation after local instability of coal pillar was studied, and the instability criterion of mining roof collapse was proposed, which was used as the failure criterion of supporting coal pillar under non-uniform load. The variation law of the limit caving distance of the roof and the length of the coal pillar instability section under different coal pillar widths was studied, and the design method of the supporting coal pillar parameters under non-uniform load was proposed. The results show that the necessary and sufficient condition of coal pillar instability is the bifurcation set Δ < 0, the instability criterion of the roof is that the maximum tensile stress σtmax is greater than the tensile strength σtl , the failure criterion of the coal pillar is that the length lmax of the instability section of the coal pillar is greater than the limit caving distance l2max of the roof of the mining cave , the width of the coal pillar in the end-wall mining of an open-pit coal mine in Shanxi is designed to be 3.0 meters.

  • [1]
    HARTCHER P,CASE G. The experience of Addcar in highwall mining operations[C]//University of Wollongong:Naj A,Bob K,2019:103-116.
    [2]
    VERMA C P,PORATHUR J L,THOTE N R,et al. Empirical approaches for design of web pillars in highwall mining:review and analysis[J]. Geotechnical and Geological Engineering,2014,32(2):587−599. doi: 10.1007/s10706-013-9713-8
    [3]
    郝玉成,胡存虎,罗怀廷. 露天煤矿端帮开采技术的研究与探讨[J]. 露天采矿技术,2012,27(S2):27−30,32.

    HAO Yucheng,HU Cunhu,LUO Huaiting. Research and Discussion on End Slope Mining Technology in Open-pit Coal Mine[J]. Opencast Mining Technology,2012,27(S2):27−30,32.
    [4]
    孙进步. SHM端帮采煤机在我国露天煤矿的应用前景[J]. 神华科技,2011,9(4):44−46. doi: 10.3969/j.issn.1674-8492.2011.04.016

    SUN Jinbu. The prospect of the application of SHM end-slope mining machine in open-pit coal mine in China[J]. Shenhua Science and Technology,2011,9(4):44−46. doi: 10.3969/j.issn.1674-8492.2011.04.016
    [5]
    周宇. 端帮开采技术在露天煤矿的应用[J]. 矿业装备,2022(4):60−61. doi: 10.3969/j.issn.2095-1418.2022.04.023

    ZHOU Yu. Application of end slope mining technology in open-pit coal mine[J]. Mining Equipment,2022(4):60−61. doi: 10.3969/j.issn.2095-1418.2022.04.023
    [6]
    MATSUI K,SHIMADA H,SASAOKA T,et al. Highwall mining system with backfilling[M]//Mine planning and equipment selection 2000. London:Routledge,2018:333−338.
    [7]
    WANG F T,ZHANG C. Reasonable coal pillar design and remote control mining technology for highwall residual coal resources[J]. Royal Society Open Science,2019,6(4):181817. doi: 10.1098/rsos.181817
    [8]
    王瑞,闫帅,柏建彪,等. 端帮开采下煤柱破坏宽度计算及失稳机制研究[J]. 岩土力学,2019,40(8):3167−3180.

    WANG Rui,YAN Shuai,BAI Jianbiao,et al. Theoretical analysis of the destabilization mechanism and the damaged width of rib pillar in open-pit highwall mining[J]. Rock and Soil Mechanics,2019,40(8):3167−3180.
    [9]
    陈彦龙,吴豪帅. 露天矿端帮开采下的支撑煤柱突变失稳机理研究[J]. 中国矿业大学学报,2016,45(5):859−865.

    CHEN Yanlong,WU Haoshuai. Catastrophe instability mechanism of rib pillar in open-pit highwall mining[J]. Journal of China University of Mining & Technology,2016,45(5):859−865.
    [10]
    刘文岗,王雷石,富强. SHM端帮开采技术及其应用的关键问题[J]. 煤炭工程,2012,44(6):1−4. doi: 10.3969/j.issn.1671-0959.2012.06.002

    LIU Wengang,WANG Leishi,FU Qiang. SHM highwall mining technology and key issues of application[J]. Coal Engineering,2012,44(6):1−4. doi: 10.3969/j.issn.1671-0959.2012.06.002
    [11]
    谭毅,郭文兵,赵雁海. 条带式Wongawilli开采煤柱系统突变失稳机理及工程稳定性研究[J]. 煤炭学报,2016,41(7):1667−1674.

    TAN Yi,GUO Wenbing,ZHAO Yanhai. Engineering stability and instability mechanism of strip Wongawilli coal pillar system based on catastrophic theory[J]. Journal of China Coal Society,2016,41(7):1667−1674.
    [12]
    郭文兵,邓喀中,邹友峰. 条带开采的非线性理论研究及应用[M]. 徐州:中国矿业大学出版社,2005.
    [13]
    王旭春,黄福昌,张怀新,等. AH威尔逊煤柱设计公式探讨及改进[J]. 煤炭学报,2002,27(6):604−608. doi: 10.3321/j.issn:0253-9993.2002.06.010

    WANG Xuchun,HUANG Fuchang,ZHANG Huaixin,et al. Discussion and improvement for A. H. Wilsons coal pillar design[J]. Journal of China Coal Society,2002,27(6):604−608. doi: 10.3321/j.issn:0253-9993.2002.06.010
    [14]
    郭仓,谭志祥,李培现,等. 基于FLAC3D的条带开采煤柱稳定性分析[J]. 现代矿业,2012,28(2):5−9. doi: 10.3969/j.issn.1674-6082.2012.02.002

    GUO Cang,TAN Zhixiang,LI Peixian,et al. Stability analysis of strip mining coal pillar based on FLAC3D[J]. Modern Mining,2012,28(2):5−9. doi: 10.3969/j.issn.1674-6082.2012.02.002
    [15]
    JIANG J,ZHANG Z,WANG D,et al. Study on Web Pillar Stability in Open-Pit Highwall Mining[J]. International Journal of Coal Science & Technology,1−18[2024−12−20]. https://doi.org/10.21203/rs.3.rs-847254/v1.
    [16]
    张国军,张勇. 基于摩尔-库伦准则的岩石材料加(卸)载分区破坏特征[J]. 煤炭学报,2019,44(4):1049−1058.

    ZHANG Guojun,ZHANG Yong. Partition failure characteristics of rock material loading and unloading based on Mohr-Coulomb criterion[J]. Journal of China Coal Society,2019,44(4):1049−1058.
    [17]
    何卫刚,连小勇,王小坡. 巷道围岩侧压力系数位移反演及应用[J]. 陕西煤炭,2023,42(3):64−69. doi: 10.3969/j.issn.1671-749X.2023.03.013

    HE Weigang,LIAN Xiaoyong,WANG Xiaopo. Displacement inversion of lateral pressure coefficient of roadway surrounding rock and its application[J]. Shaanxi Coal,2023,42(3):64−69. doi: 10.3969/j.issn.1671-749X.2023.03.013
    [18]
    张明,付冬梅,程学群,等. 基于变量选择的尖点突变模型的两步构建方法[J]. 工程科学学报,2023,45(1):128−136.

    ZHANG Ming,FU Dongmei,CHENG Xuequn,et al. A two-step method for cusp catastrophe model construction based on the selection of important variables[J]. Chinese Journal of Engineering,2023,45(1):128−136.
    [19]
    穆成林,裴向军,路军富,等. 基于尖点突变模型巷道层状围岩失稳机制及判据研究[J]. 煤炭学报,2017,42(6):1429−1435.

    MU Chenglin,PEI Xiangjun,LU Junfu,et al. Study on the instability criterion of layered rock mass failure based on the cusp catastrophe theory[J]. Journal of China Coal Society,2017,42(6):1429−1435.
    [20]
    袁颖,李佳玉. 岩质边坡稳定性评价的尖点突变理论模型[J]. 地质与勘探,2021,57(1):183−189.

    YUAN Ying,LI Jiayu. A cusp catastrophe theory model for evaluation of rock slope stability[J]. Geology and Exploration,2021,57(1):183−189.
    [21]
    姜聚宇,路烨,曹兰柱,等. 动-静载作用下端帮开采支撑煤柱参数设计方法[J]. 煤炭科学技术,2023,51(5):53−62.

    JIANG Juyu,LU Ye,CAO Lanzhu,et al. Parameter design of coal pillar in highwall mining under action of dynamic-static load[J]. Coal Science and Technology,2023,51(5):53−62.
    [22]
    侯朝炯,马念杰. 煤层巷道两帮煤体应力和极限平衡区的探讨[J]. 煤炭学报,1989,14(4):21−29. doi: 10.3321/j.issn:0253-9993.1989.04.001

    HOU Chaojiong,MA Nianjie. Stress in in-seam roadway sides and limit equilibrium zone[J]. Journl of China Coal Society,1989,14(4):21−29. doi: 10.3321/j.issn:0253-9993.1989.04.001
    [23]
    李利峰. 切顶成巷“短臂梁” 效应及层状顶板运动规律研究[D]. 北京:中国矿业大学(北京),2021.

    LI Lifeng. The effect of "short arm beam" and the movement rule of layered roof in roadway formed by cutting roof[D]. Beijing:China University of Mining & Technology-Beijing,2021.
    [24]
    龙驭球. 弹性地基梁的计算[M]. 北京:人民教育出版社,1981.
    [25]
    James M. Gere. Mechanics of Materials[M]. Wadsworth Publishing Co Inc,2005
    [26]
    刘刚. 条带开采煤柱静动态稳定性研究[D]. 西安:西安科技大学,2011.

    LIU Gang. Static and Dynamic Stability of Coal Pillars in Strip Mining[D]. Xi’an:Xi’an University of Science and Technology,2011.
    [27]
    李焘. 端帮压煤井工开采下工作面矿压规律及边坡稳定性研究[D]. 徐州:中国矿业大学,2019.

    LI Tao. Study on the mining pressure rule of the working face and slope stability under the side slope underground mining[D]. Xuzhou:China University of Mining and Technology,2019.
    [28]
    曹净,宋志刚. 地下空间结构[M]. 北京:中国水利水电出版社,2015.
    [29]
    高岩,杨小军,焦小哲. 平板网架支座约束状态分析[J]. 煤炭工程,2022,54(5):26−31.

    GAO Yan,YANG Xiaojun,JIAO Xiaozhe. Restraint state analysis of the support of flat space truss[J]. Coal Engineering,2022,54(5):26−31.
    [30]
    苏承东,唐旭,倪小明. 煤样抗压、拉强度与点荷载指标关系的试验研究[J]. 采矿与安全工程学报,2012,29(4):511−515.

    SU Chengdong,TANG Xu,NI Xiaoming. Study on correlation among point load strength,compression and tensile strength of coal samples[J]. Journal of Mining & Safety Engineering,2012,29(4):511−515.
  • Related Articles

    [1]XIE Jiacheng, WANG Xuewen, YANG Zhaojian, LI Juanli, LIU Yang, GE Xing. Technical conception and practice of joint virtual simulation for coal seamand equipment in fully-mechanized coal mining face[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (5).
    [2]XIE Jiacheng, WANG Xuewen, LI Xiang, YANG Zhaojian. Research status and prospect of virtual reality technology in field of coal mine[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (3).
    [3]LI Mei, SUN Zhenming, LYU Pingyang, CHEN Jinchuan, MAO Shanjun. Study on key technology of multiplayer virtual reality training platform forfully-mechanized coal mining face[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (1).
    [4]Zhang Xuhui Dong Runlin Ma Hongwei Du Yuyang Mao Qinghua Wang Chuanwei Xue Xusheng Ma Kun, . Study on remote control technology of mine rescue robot based on virtual reality[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (5).
    [5]HUANG Zeng-hua MIAO Jian-jun, . Application Research of Equipment Centralized Control Technology in Fully-Mechanized Coal Face[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (11).
    [6]NING Gui-feng. Study on Automation Application to Fully-Mechanized Coal Mining in Ultra Thin Seam .[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (11).
    [7]WANG Guo-fa. Development of Fully-Mechanized Coal Mining Technology and Equipment[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (9).
    [8]Application and Development of Fully Mechanized Coal Mining Technology in China[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (10).
    [9]Design and Implementation of Mine Virtual Platform and Electromechanical Monitoring and Measuring Application[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (11).
  • Cited by

    Periodical cited type(3)

    1. 王明川,汤智德,谢安强,简灵静,林晗,王英姿,陈灿. 低磷胁迫时混合内生真菌对杉木幼苗的促生作用. 东北林业大学学报. 2025(01): 1-9 .
    2. 贺琴,李钢铁,麻云霞. 干旱胁迫下接种AM真菌对文冠果幼苗根系的影响. 内蒙古农业大学学报(自然科学版). 2025(02): 9-17 .
    3. 毕银丽,武超,彭苏萍,田乐煊,张延旭. 西部煤矿区微生物修复促进植物水分高效利用策略. 煤炭学报. 2024(02): 1003-1010 .

    Other cited types(0)

Catalog

    Article views (82) PDF downloads (33) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return